
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

220

Internal structure of iOS and Building tools for iOS apps

Miss Priyanka V. Kanoi
2nd yr Information and Technology

JDIET , Yavatmal

kanoi.priyanka@gmail.com

Miss Payal N. ingole
3rd yr Computer sc and Engineering

JDIET, Yavatmal

ingole.payal@gmail.com

Abstract: iOS is world’s most advanced operating system. With

its easy-to-use interface, amazing features, and rock-solid

stability, iOS is the foundation of iPhone, iPad, and iPod touch. It

is the most user friendly operating system. With better GUI

performance. iOS consists of four layers – cocoa touch layer,

media layer, core service layer, core OS layer. Some of the

developmental tools used for preparing iOS apps include

XCODE, Instruments and developer library. With thousands of

apps in practically every category, iOS is the platform for the

world’s largest collection of mobile apps. And every app starts

with the right DNA. That’s because it gives third-party

developers a rich set of tools and APIs to create apps and games

designed to take advantage of the technology inside every iOS

device.

Keywords: XCODE, iCLOUD, SDK, cocoa touch layer, media
layer, core service layer, core OS layer, OS X.

I. INTRODUCTION

iOS which was imagination of Steve Jobs, is now reality of

young minds. A mobile operating system, iOS (previously

iPhone OS) , was developed and distributed by Apple Inc.

Originally released for the iPhone and iPod Touch in 2007, it

has been extended to support other Apple devices such as the

iPad and Apple TV. Unlike Microsoft's Windows Phone and

Google's Android, Apple does not license iOS for installation

on non-Apple devices. The user interface of iOS is based on

the concept of direct manipulation, using multi-touch gestures.

Interface control elements consist of buttons, sliders and

switches. Interaction with the OS includes gestures such as

tap, swipe, pinch, and reverse pinch, all of which have

specific definitions within the context of the iOS and its multi-

touch interface. iOS is derived from OS X,with which it shares

the Darwin foundation. iOS is Apple's mobile version of the

OS X used on Apple computers.

II. HISTORY

The operating system was unveiled with the iPhone at the

Macworld Conference & Expo, January 9, 2007, and released

in June of that year.[1] At first, Apple marketing literature did

not specify a separate name for the operating system, stating

simply that the "iPhone runs OS X".[2] Initially, third-party

applications were not supported. Steve Jobs' reasoning was

that developers could build web applications that "would

behave like native apps on the iPhone". [3][4] On October 17,

2007, Apple announced that a native Software Development

Kit (SDK) was under development and that they planned to

put it "in developers' hands in February”. On March 6, 2008,

Apple released the first beta, along with a new name for the

operating system: "iPhone OS".In June 2010, Apple rebranded

iPhone OS as "iOS". The trademark "IOS" had been used by

Cisco for over a decade for its operating system, IOS, used on

its routers. To avoid any potential lawsuit, Apple licensed the

"IOS" trademark from Cisco. Apple provides major updates to

the iOS operating system approximately once a year over

iTunes and also, since iOS version 5.0, over the air. The latest

major update is iOS 6, publicly announced on June 11, 2012

and released on September 12, 2012. Over 200 new features

debut in iOS 6, including Apple's new Passbook service,

Apple-sourced Maps, and full Facebook integration.

III. VERSIONS OF IOS IN IPHONE

VERSIONS iOS

iPhone iOS 1.0

iPhone 3G iOS 2.0

iPhone 3GS iOS 3.0

iPhone 4 iOS 4.0 (GSM model)

iOS 4.25 (CDMA

model)

iPhone 4s iOS 5.0

iPhone 5 iOS 6.0

Table 3.1 : Version history

IV. IOS 6

iOS 6 is the latest major version of the iOS mobile operating

system from Apple Inc. The latest version of iOS 6 is 6.1. It

was preceded by iOS 5 (final version was 5.1.1).

Apps supported by iOS 6 are Siri, maps, music, facetime,

safari, message, airplay, game center, imovie, iphoto, garrage

band, keynotes,pages, numbers, ibooks, itunes u, cards ,

podcasts, passbook, find my iPhone, remote.

V. TECHNOLOGICAL OVERVIEW AND MAKING OF IOS

iOS is the operating system that runs on iPhone, iPod touch,

and iPad devices. The operating system manages the device

hardware and provides the technologies required to implement

native apps. The operating system also ships with various

system apps, such as Phone, Mail, and Safari, that provide

standard system services to the user.

The iOS Software Development Kit (SDK) contains the tools

and interfaces needed to develop, install, run, and test native

apps that appear on an iOS device’s Home screen.[5] Native

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

221

apps are built using the iOS system frameworks and

Objective-C language and run directly on iOS. Unlike web

apps, native apps are installed physically on a device and are

therefore always available to the user, even when the device is

in Airplane mode. They reside next to other system apps and

both the app and any user data is synced to the user’s

computer through iTunes.

In addition to native apps, it is possible to create web apps

using a combination of HTML, cascading style sheets (CSS),

and JavaScript code. Web apps run inside the Safari web

browser and require a network connection to access your web

server. Native apps, on the other hand, are installed directly on

the device and can run without the presence of a network

connection. The iOS SDK provides the resources you need to
develop native iOS apps. Therefore, understanding a little

about the technologies and tools that make up this SDK can

help you make better choices about how to design and

implement your apps.

VI. THE LAYERED ARCHITECTURE OF IOS

At the highest level, iOS acts as an intermediary between the

underlying hardware and the apps that appear on the screen.

The apps you create rarely talk to the underlying hardware

directly. Instead, apps communicate with the hardware through

a set of well-defined system interfaces that protect your app

from hardware changes. This abstraction makes it easy to write

apps that work consistently on devices with different hardware

capabilities.

The implementation of iOS technologies can also be viewed as

a set of layers, which are shown in Figure 4.1. At the lower

layers of the system are the fundamental services and

technologies on which all apps rely; higher-level layers

contain more sophisticated services and technologies.

Figure 4.1Figure 4.1Figure 4.1Figure 4.1 Layers of iOS

As you write your code, you should prefer the use of higher-

level frameworks over lower-level frameworks whenever

possible. The higher-level frameworks are there to provide

object-oriented abstractions for lower-level constructs. These

abstractions generally make it much easier to write code

because they reduce the amount of code you have to write and

encapsulate potentially complex features, such as sockets and

threads. Although they abstract out lower-level technologies,

they do not mask those technologies from you. The lower-

level frameworks are still available for developers who prefer

to use them or who want to use aspects of those frameworks

that are not exposed by the higher layers.

VII. LAYERS OF IOS

A. Cocoa Layer

The Cocoa Touch layer contains the key frameworks for

building iOS applications. This layer defines the basic

application infrastructure and support for key technologies

such as multitasking, touch-based input, push notifications,

and many high-level system services. When designing your

applications, you should investigate the technologies in this

layer first to see if they meet your needs.[6]

 The following sections describe some of the key

technologies available in the Cocoa Touch layer.

1) AutoLayout - Introduced in iOS 6, auto layout improves

upon the “springs and struts” model previously used to lay out

the elements of a user interface. With auto layout, you define

rules for how to lay out the elements in your user interface.

These rules express a larger class of relationships and are more

intuitive to use than springs and struts.

2) Storyboards - Introduced in iOS 5, storyboards supplant

nib files as the recommended way to design your application’s

user interface. Unlike nib files, storyboards let you design your

entire user interface in one place so you can see all of your

views and view controllers and how they work together. An

important part of storyboards is the ability to define segues,

which are transitions from one view controller to another.

Applications can define these transitions visually in Xcode or

initiate them programmatically in Xcode. These transitions

allow you to capture the flow of your user interface in addition

to the content.

3) Document Support - Introduced in iOS 5, the UIKit

framework introduced the UIDocument class for managing the

data associated with user documents. This class makes

implementing document-based applications much easier,

especially applications that store documents in iCloud. In

addition to providing a container for all of your document-

related data, the UIDocument class provides built-in support

for asynchronous reading and writing of file data, safe saving

of data, automatic saving of data, support for detecting iCloud

conflicts, and support for flat file or package file

representations. For applications that use Core Data for their

data model, you can use the UIManagedDocument subclass to

manage your data stores.

4) Multitasking - Applications built using iOS SDK 4.0 are

not terminated when the user presses the Home button;

instead, they shift to a background execution context. The

multitasking support defined by UIKit helps your application

transition to and from the background state smoothly.To

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

222

preserve battery life, most applications are suspended by the

system shortly after entering the background. A suspended

application remains in memory but does not execute any code.

5) UI State Preservation - Introduced in iOS 6, state

preservation makes it easier for apps to restore their user

interface to the state it was in when the user last used it. When

an app moves to the background, it is asked to save the

semantic state of its views and view controllers. Upon

relaunch, the app uses this state to restore its interface and

make it seem as if the app had never quit. Support for state

preservation is integrated into UIKit, which provides the

infrastructure for saving and restoring your app’s interface.

6) Standard System View Controllers - Many of the

frameworks in the Cocoa Touch layer contain view controllers

for presenting standard system interfaces. You are encouraged

to use these view controllers in your applications to present a

consistent user experience. Whenever you need to perform one

of the following tasks, you should use a view controller from

the corresponding framework:

a) Display or edit contact information—Use the view

controllers in the Address Book UI framework.

b) Create or edit calendar events— Use the view

controllers in the Event Kit UI framework.

c) Compose an email or SMS message— Use the view

controllers in the Message UI framework.

d) Open or preview the contents of a file— Use
the UIDocumentInteractionController class in the UIKit

framework.

e) Take a picture or choose a photo from the user’s photo

library— Use the UIImagePickerController class in the UIKit
framework.

f) Shoot a video clip — Use

the UIImagePickerController class in the UIKit framework.

Other technologies supported by cocoa touch layer are –

Printing , Apple Push Notification Service , Local

Notifications , Gesture Recognizers , Peer-to-Peer Services,

External Display Support

B. Media Layer

The Media layer contains the graphics, audio, and video

technologies geared toward creating the best multimedia

experience available on a mobile device. The technologies in

this layer were designed to make it easy for you to build

applications that look and sound great.[7]

The following sections describe some of the key technologies

available in the media layer.

1) Graphics Technologies - High-quality graphics are an

important part of all iOS applications. The simplest way to

create an application is to use prerendered images together

with the standard views and controls of the UIKit framework

and let the system do the drawing. However, there may be

situations where you need to go beyond simple graphics.

2) Audio Technologies - The audio technologies available

in iOS are designed to help you provide a rich audio

experience for your users. This experience includes the ability

to play high-quality audio, record high-quality audio, and

trigger the vibration feature on certain devices.The system

provides several ways to play back and record audio content.

3) Video Technologies - Whether you are playing movie

files from your application or streaming them from the

network, iOS provides several technologies to play your

video-based content. On devices with the appropriate video

hardware, you can also use these technologies to capture video

and incorporate it into your application.The system provides

several ways to play and record video content that you can

choose depending on your needs.

4) AirPlay - AirPlay is a technology that lets your

application stream audio to Apple TV and to third-party

AirPlay speakers and receivers. AirPlay support is built in to

the AV Foundation framework and the Core Audio family of

frameworks. Any audio content you play using these

frameworks is automatically made eligible for AirPlay

distribution. Once the user chooses to play your audio using

AirPlay, it is routed automatically by the system.

C. Core Services Layer

The Core Services layer contains the fundamental system

services that all applications use. Even if you do not use these

services directly, many parts of the system are built on top of

them. [8]

The following sections describe some of the key technologies

available in the Core Services layer.

1) iCloud Storage - Introduced in iOS 5, iCloud storage

lets your application write user documents and data to a central

location and access those items from all of a user’s computers

and iOS devices. Making a user’s documents ubiquitous using

iCloud means that a user can view or edit those documents

from any device without having to sync or transfer files

explicitly. Storing documents in a user’s iCloud account also

provides a layer of safety for that user. Even if a user loses a

device, the documents on that device are not lost if they are in

iCloud storage.There are two ways that applications can take

advantage of iCloud storage, each of which has a different

intended usage:

a) iCloud document storage - Use this feature to store

user documents and data in the user’s iCloud account.

b) iCloud key-value data storage - Use this feature to

share small amounts of data among instances of your

application.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

223

Figure 7.C.1 : iCloud Storage

2) Automatic Reference Counting - Introduced in iOS

5, Automatic Reference Counting (ARC) is a compiler-level

feature that simplifies the process of managing the lifetimes of

Objective-C objects. Instead of you having to remember when

to retain or release an object, ARC evaluates the lifetime

requirements of your objects and automatically inserts the

appropriate method calls at compile time. ARC replaces the

traditional managed memory model style of programming

found in earlier versions of iOS. Any new projects you create

automatically use ARC. And Xcode provides migration tools

to help convert existing projects to use ARC.

3) SQLite - The SQLite library lets you embed a

lightweight SQL database into your application without

running a separate remote database server process. From your

application, you can create local database files and manage the

tables and records in those files. The library is designed for

general-purpose use but is still optimized to provide fast

access to database records. The header file for accessing the

SQLite library is located in <iOS_SDK>/usr/include/sqlite3.h,

where <iOS_SDK> is the path to the target SDK in your

Xcode installation directory.

4) XML Support - The Foundation framework provides

the NSXMLParser class for retrieving elements from an XML

document. Additional support for manipulating XML content

is provided by the libXML2 library. This open source library

lets you parse or write arbitrary XML data quickly and

transform XML content to HTML. The header files for

accessing the libXML2 library are located in

the <iOS_SDK>/usr/include/libxml2/ directory,

where <iOS_SDK> is the path to the target SDK in your

Xcode installation directory.

5) Block Objects - Introduced in iOS 4.0, block objects are

a C-level language construct that you can incorporate into your

C and Objective-C code. A block object is essentially an

anonymous function and the data that goes with that function,

something which in other languages is sometimes called

a closure or lambda. Blocks are particularly useful as

callbacks or in places where you need a way of easily

combining both the code to be executed and the associated

data.
In iOS, blocks are commonly used in the following scenarios:

a) As a replacement for delegates and delegate methods

b) As a replacement for callback functions

c) To implement completion handlers for one-time

operations

d) To facilitate performing a task on all the items in a

collection

e) Together with dispatch queues, to perform

asynchronous tasks

Other technologies supported by core service layer are – Data

Protection , File-Sharing Support , Grand Central Dispatch ,

In-App Purchase.

D. Core OS Layer

The Core OS layer contains the low-level features that most

other technologies are built upon. Even if you do not use these

technologies directly in your applications, they are most likely

being used by other frameworks. And in situations where you

need to explicitly deal with security or communicating with an

external hardware accessory, you do so using the frameworks

in this layer.[9]

VIII. IOS DEVELOPER TOOLS

To develop applications for iOS, you need an Intel-based

Macintosh computer and the Xcode tools. Xcode is Apple’s

suite of development tools that provide support for project

management, code editing, building executables, source-level

debugging, source-code repository management, performance

tuning, and much more. At the center of this suite is the Xcode

application itself, which provides the basic source-code

development environment. Xcode is not the only tool, though,

and the following sections provide an introduction to the key

applications you use to develop software for iOS.[10]

A. XCODE

The focus of your development experiences is the Xcode

application. Xcode is an integrated development environment

(IDE) that provides all of the tools you need to create and

manage your iOS projects and source files, assemble your user

interface, build your code into an executable, and run and

debug your code either in iOS Simulator or on a device. Xcode

incorporates a number of features to make developing iOS

applications easier, including the following:

1) GCC compilers supporting C, C++, Objective-C,

Objective-C++, and other languages.

2) A project management system for defining software

products.

3) A code-editing environment that includes features such

as syntax coloring, code completion, and symbol indexing.

4) An integrated editor for creating storyboard and nib

files.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

224

Figure 8.A.1 : XCODE Workspace

B. Instruments

To ensure that you deliver the best user experience for your

software, the Instruments environment lets you analyze the

performance of your iOS applications while running in

Simulator or on a device. Instruments gather data from your

running application and presents that data in a graphical

display called the timeline view. You can gather data about

your application’s memory usage, disk activity, network

activity, and graphics performance. The timeline view can

display all the types of information side by side, letting you

correlate the overall behavior of your application, not just the

behavior in one specific area.

C. The Developer Library

The iOS Developer Library contains the documentation,

sample code, tutorials, and other information you need to write

iOS applications. Because the developer library contains

thousands of pages of documentation, ranging from high-level

getting started documents to low-level API reference

documents, understanding how to find the information is an

important step in the development process. The developer

library uses a few techniques for organizing content that

should make it easier to browse.

IX. HARDWARE SECURITY FEATURES IN IOS

On every device, speed and power efficiency are critical.

Cryptographic operations are complex and can introduce

performance problems if not designed and implemented

correctly. Every iOS device has a dedicated AES 256 crypto

engine built into the DMA path between the flash storage

and main system memory, making file encryption highly

efficient. Along with the AES engine, SHA-1 is

implemented in hardware, further reducing cryptographic

operation overhead. The device’s unique ID (UID) and a

device group ID (GID) are AES 256-bit keys fused into the

application processor during manufacturing. No software or

firmware can read them directly; they can see only the

results of encryption or decryption operations performed

using them. The UID is unique to each device. The GID is

common to all processors in a class of devices, and is used

as an additional level of protection when delivering system

software during installation and restore. Burning these keys

into the silicon prevents them from being tampered with or

bypassed, and guarantees that they can be accessed only by

the AES engine. The UID allows data to be

cryptographically tied to a particular device. The UID is not

related to any other identifier on the device. Apart from the

UID and GID, all other cryptographic keys are created by

the system’s random number generator (RNG) using an

algorithm based on Yarrow. System entropy is gathered

from interrupt timing during boot, and additionally from

internal sensors once the device has booted.[11]

X. IOS TECHNOLOGIES PACKAGED AS FRAMEWORKS

Apple delivers most of its system interfaces in special

packages called frameworks. A framework is a directory

that contains a dynamic shared library and the resources

(such as header files, images, helper apps, and so on)

needed to support that library. To use frameworks, you

link them into your app project just as you would any

other shared library. Linking them to your project gives

you access to the features of the framework and also lets

the development tools know where to find the header

files and other framework resources.

XI. IOS AND OS X SHARE MANY OF THE SAME

FRAMEWORKS

If you are an existing Cocoa developer, writing iOS apps

should feel familiar. Many of the technologies found in OS X

can also be found in iOS. The biggest differences between the

two platforms occur at the user interface level but even then

there are similarities in how you present and manage your

app’s interface. As a result, porting apps from OS X to iOS is

possible with a little bit of work.

XII. CONCLUSION

Each component of the iOS security platform, from hardware

to encryption to device access, provides organizations with the

resources they need to build enterprise-grade security

solutions. The sum of these parts gives iOS its industry-

leading security features, without making the device difficult

or cumbersome to use. Study of the layers of iOS helps users

to understand the building blocks of apps used in this

operating system. Using the simple basic language like c and

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

225

c++ , apple has developed this operating system. Along with

the employees working in apple .inc, it also gives ample

opportunity to common users to create, develop and upload

their apps. With the above study of iOS in iPhone, we can

conclude that the system which is the centre of attraction for

every intelligent mind around is in a real sense a block builds

out of very basic technologies which was worked hard for

years.

XIII. ACKNOWLEDGMENT

We thank Prof. Dr. Rajkishor Tugnayat sir (H.O.D) I.T
Dept JDIET,Yavatmal for inspiring and guiding us. We extend
our thanks to Ankita Patil mam and Kinjal Patel mam
(Assistant Prof. CSE Dept JDIET,Yavatmal) for helping us out.

XIV. REFERENCES

[1] Honan, Matthew (January 9, 2007). "Apple unveils

iPhone". Macworld. Retrieved January 16, 2010.

[2] "Apple – iPhone – Features – OS X". Archived from the
original on January 11, 2008. Retrieved June 15, 2010.

[3] Gonsalves, Antone (October 11, 2007). "Apple Launches
iPhone Web Apps Directory". InformationWeek. Retrieved
February 16, 2010.

[4] Ziegler, Chris (June 11, 2007). "Apple announces third-party
software details for iPhone". Engadget. Retrieved June 9, 2010.

[5] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/Introduction/Introductio
n.html

[6] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/iPhoneOSTechnologies/i
PhoneOSTechnologies.html

[7] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/MediaLayer/MediaLayer
.html#//apple_ref/doc/uid/TP40007898-CH9-SW4

[8] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/CoreServicesLayer/Core
ServicesLayer.html#//apple_ref/doc/uid/TP40007898-CH10-
SW5

[9] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/CoreOSLayer/CoreOSL
ayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1

[10] http://developer.apple.com/library/ios/#documentation/miscellan
eous/conceptual/iphoneostechoverview/CoreOSLayer/CoreOSL
ayer.html#//apple_ref/doc/uid/TP40007898-CH11-SW1

[11] http://images.apple.com/ipad/business/docs/iOS_Security_May1
2.pdf

