
International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 1

Verification Framework for Detecting Safety Violations in
UML State chart Models of Reactive Systems

C.M. Prashanth
Dept. of Computer Engineering

N.I.T.K, Surathkal
INDIA-575 025

+91 9448185670

prashanth_bcs@yahoo.co.in

Dr. K. Chandrashekar Shet
Dept. of Computer Engineering

N.I.T.K., Surathkal
INDIA-575 025

+91 9845237101

kcshet@nitk.ac.in

Janees Elamkulam
IBM India Ltd.

Airport Road, Bangalore
INDIA-560 017

+91 9448185670

Janees.ek@in.ibm.com

ABSTRACT
The model based development is a widely accepted phenomenon
to build dependable software. This has lead to development of
tools which can generate deployable code from the model. Hence,
ensuring the correctness of such models becomes extremely
important. Model checking technique can be applied to detect
specification violations in such models at the early stage of
development life cycle. In practice, such validations are done
using off-the-shelf model checkers. This technique though
popular has a drawback that, model should be described in the
native language of the model checker. In this paper, we propose a
framework for the verification of the dynamic behavior of
reactive systems modeled using UML (Unified Modeling
Language) statechart diagrams. The model is translated to an
intermediate representation by parsing the information embedded
behind the UML statecharts, this intermediate representation is
used for checking the safety violations. Verification framework
proposed is scalable to complex systems.

D.2.4 [Software Engineering]: Software/Program Verification –
Model Checking:

General Terms: Design, Verification

Keywords
Statechart, Unified Modeling Language (UML), Framework.

1 INTRODUCTION
The development of dependable software has been the major goal
for the advent of software engineering discipline. The traditional
way of verifying software systems is through human inspection,
simulation, and testing. Though these methods are cost effective,
unfortunately these approaches provide no guarantee about the
quality of the software. Human inspection is limited by the
abilities of the reviewers, simulation and testing can only explore
a minuscule fraction of the state space of any software system.
Model driven software development has been a prominent means
to enhance the understandability of the system’s structure and

behavior. It has prompted industries to develop tools which can
generate the code from the model in high level languages like C,
C++ or JAVA (IBM’s Rational Rose RT [1] is one such tool for
the development of embedded real time systems). As deployable
binaries are generated from the model, ensuring model’s
correctness becomes highly essential. The commonly used formal
model verification technique is model checking. Model checking
[2] is a pragmatic technique that, given a finite-state model of a
system and a logical property (expected system property),
systematically checks whether model holds the property or not. If
the model does not hold the expected property, an error trace (also
called as counter example) is generated. The original model can
be refined by leveraging information generated by the counter
example; this approach is known as counter example guided
model refinement [3]. Several model checking tools like SPIN
(Simple Promela INterpreter) [4], SMV (Symbolic Model
Verifier) [5], SLAM[6], BLAST (Berkeley Lazy Abstraction
software verification Tool) [7] and RuleBase [8] are in existence.
The major drawback of using model checking tools for
verification is that, they expect system to be modeled using their
proprietary input language. The input languages of most of these
tools are text based and lacks advantages of visual representation.
Numerous researchers have tried to address this issue. We have
done thorough review of the earlier works [9] and found that,
though they suggest modeling the dynamic behavior of the system
using UML(Unified Modeling Language) statechart diagrams
(provides visual representation to the models), subsequently these
statechart diagrams are translated to the input language of the
model checker before verification. The translation process
removes the abstraction of the models and exponentially increases
the state space of the complex systems. This could lead to state-
explosion-problem [10]. We in this paper present a verification
frame work which avoids the usage of off-the-shelf-model-
checker and translation of UML statechart models to input
language of the model checker, hence the state explosion is
minimized.

In the next section we provide necessary introduction to UML
statechart diagram and in section 3, framework for verification of
complex reactive systems is presented. We draw conclusions in
section 4. Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 2

2 BACKGROUND

2.1 UML Statechart diagram
The Unified Modeling Language is a general purpose visual
modeling language that is designed to specify, visualize, construct
and document the artifacts of the software system The UML is
simple, powerful and based on a small number of core concepts
that most object oriented developers can easily learn and apply.
The UML specification consists of two interrelated parts:

� UML semantics1: A meta model that specifies the
abstract syntax and semantics of the UML object
modeling components

� UML Notation: A graphic notation for the visual
representation of the UML semantics

The UML has a collection of graphical notations each with a well
defined semantics. It allows construction of several diagrams
using these notations and relationship among them. These
diagrams aid to visualize a system from different perspectives.
The UML includes class diagram, sequence diagrams and
statechart diagrams that can be used to specify both structural
(class diagrams) and dynamic (sequence and statechart diagrams)
views of software systems.

The UML statechart diagrams are used for behavioral modeling of
the software and greatly increase the understanding of a system
by revealing inconsistencies, ambiguities, and incompleteness that
might otherwise go undetected. The statecharts were first
introduced by David Harel in 1987 [12] as a visual formalism for
complex reactive systems. The primary motivation behind this
model was to overcome the limitations inherent in conventional
state transition diagrams (or state diagrams for short) to describe
the complex systems. State diagrams are directed graphs, with
nodes denoting states, and arrows denoting the transitions. The
UML statechart diagrams extend state diagrams to include notions
of hierarchy (ability to cluster many states into a super state) and
concurrency (orthogonality). Statechart shows sequence of states
that an object goes through during its life cycle in response to
stimuli, together with its responses and actions. A state in a
statechart is represented by rounded rectangle and can be
recursively decomposed into exclusive states (OR-state) or
concurrent states (AND state). A simple transition may have a
triggering event (whose occurrence cause the transition to take
place), an enabling guard condition (which must be true for the
transition to be taken), and output event and actions, all of which
are optional. When a transition in a statechart is triggered (i.e. an
event is received and guard condition becomes true), the object
leaves its current state, initiates the action(s) for that transition
and enters a new state. Any internal or external event is
broadcasted to all states of all objects in the system. Transitions
between concurrent states are not allowed, but synchronization
and information exchange is possible through events. The
transitions are represented by directed arrows with labels showing
triggering event guard condition and actions (optional). An initial
state is shown as a small solid filled circle and a final state is
shown as a circle surrounding a small solid filled circle. The final
state represents the completion of activity in the enclosing state

1 It is not discussed in this paper and interested readers can refer to [11] for

details.

The Fig.1a is an abstraction of hypothetical “Training” system,
modeled using UML statechart diagram. The Figures 1b and 1c
shows expansion of Attend Course and Examination states of Fig
1a into concurrent sub states (AND states) and sequential sub
states (OR states) respectively. Visually AND state is depicted by
splitting the state using dashed lines as shown in Fig. 1b. The
Fig.1d shows completely expanded/flattened view of the abstract
model, called global representation (without hierarchy).

Figure 1 a. Abstract statechart model of “Training system”

Figure 1 b. Concurrent refinement

Figure 1 c. Sequential refinement

2.2 Earlier works
A widely known approach for verifying the complex systems is,
by modeling them in the input language (mostly text-based) of the
off-the-shelf model checker and passing them on to model
checker. The property expected is specified in temporal logic.
Subsequently, the need of visual formalism to the models was
realized and UML statecharts were used for modeling dynamic

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 3

behavior of the system. The verification of such models is done
by first representing the UML statecharts in Extended
Hierarchical Automata (EHA) [13] [14] [15] and then mapping to
input language of the model checker. This approach is well
received and successful for less complex systems. As the
complexity of the system grows, this technique of flattening
(removal of abstraction) the original model during verification
would lead to “state-explosion” and hence aborts the verification
process.

Figure 1 d. Global representation

3 VERIFICATION FRAMEWORK
In this section, we present a framework, which supports the
construction of automated safety violation analysis tools for UML
statechart diagrams. This can be integrated with industrial CASE
tools (which generate code from the models) for verifying models

3.1 Methodology
Our approach depicted in Fig. 2 does not use off-the-shelf model
checker and hence translation to any other modeling language is
avoided. The logics of the UML statechart diagram are captured
in a textual format and then the same is converted to state space
graph (Kripke Structure). Unlike most of the model checkers, here
the data structure preserves the abstraction and whole state space
graph is not brought into memory at once. The verification is
done iteratively so that the state explosion problem discussed
earlier in the paper would be minimized.

3.2 Architecture
The architecture of UML model verifier shown in Fig. 3,
automatically searches the complete set of states of the state space
for an incorrect behavior and out puts error trace if any. There are
four principal components, viz.,

� The UML editor
� Model compiler
� Property extractor
� Checker

The UML editor allows creating both abstract and concrete
statechart models of the reactive systems. It supports all UML

visual notations and semantics to capture all important design
decisions. The user is prompted to enter relevant information as
(s) he creates the model. This .information is later used by “model
compiler” for constructing intermediate representation of the
model.

The Model Compiler reads the UML statechart model and
generates an intermediate representation of the same by parsing
the UML statechart. This intermediate textual representation is
eventually translated to state space graph.

Figure 2. Verification model for UML statecharts

The Property Extractor extracts model properties such as set of
valid states, transitions and events from the textual form and the
state space graph. It also gets safety property to be verified from
the external world.

The Checker searches the state space iteratively for the safety
violations. It outputs “Yes”, if the specified safety property holds,
otherwise outputs “No” and the error trace (counter example). As

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 4

this is the core part of the verifier we discuss in detail, the
technological aspects of this module in the next section.

3.3 Checker Algorithm
Detection of bad states in huge state space graph becomes hard at
times. This is due to the limited availability of resources, memory
in particular. Therefore devising a memory efficient algorithm is
indispensable.

An iterative search approach is presented below:

Step 1: Start from the abstract level
Step 2: Let S represents set of reachable sates (given by

 property extractor)
Step 3: Let Ø be the expected property (let Ø be the safety
 violation or bad state)
Step 4: Let I be the set of initial states (given by property
 extractor)
Step 5: Find out set s which can be reached in one step from

 the current state
Step 6: Search the resulting s to find Ø
Step 7: Iterate the steps 5 and 6 until no new states are visited

 or Ø is found.
Step 8: Deepen/expand the part of the model and iterate the

 steps 2 through 7, until all the parts of the model is
 exhaustively searched

Step 9: If Ø is not found output “Yes” otherwise output “No”
 and path from the initial state.

This divide and conquer search algorithm is memory efficient as
it does not keep the entire state-space of the model in the memory
instead iteratively expands the model.

Figure 3. High-level design of UML model verifier

4 CONCLUSIONS
Most of the existing approaches translate UML statechart model
into text based modeling language which can then be verified
using off-the-shelf model checker. This translation process
removes the salient features of the statecharts like hierarchy or
abstraction. In other words, flattening of the statecharts leads to
large state space requirement and makes verification approach not
scalable to complex systems. The proposed iterative verification
technique does not keep the entire state space of the UML
statechart models in the memory. Hence, system with large state
space can be handled efficiently. The usage of off-the-shelf model
checker for verification of UML statechart models is avoided
here; therefore no translation of UML models to the proprietary
language of the model checker is necessary.

5 ACKNOWLEDGMENTS
We thank IBM India Limited – software labs, Bangalore for
supporting us to take up this work and providing us necessary
information.

6 REFERENCES
[1] IBM Rational Rose Real Time.2007

http://www.ibm.com/developerworks/rational/library/797.ht
ml , (visited on 01/12/2007)

[2] Edmund M. Clarke,Jr., Orna Grumberg and Doron A. ,1999
Model Checking (The MIT press, 1999)

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 5

[3] Edmund M Clarke, Ansgar Fehnker, et.al.2003: Abstraction
and Counterexample refinement fin model checking of
Hybrid Systems, Vol.14, No 4, International journal of
foundations of computer science, (2003), 583-604

[4] Gerard J. Holzmann 1997, The Model Checker Spin, IEEE
Trans. on Software Engineering, Vol. 23, No. 5, (1997),
279-295

[5] Kenneth L. Mc. Millan 1992, Symbolic Model Checking: An
approach to the state explosion problem, (Ph.D thesis
submitted to Carnegie Mellon University (CMU), 1992)

[6] The SLAM project 2007, http://research.microsoft.com/slam/
(visited on 13/10/2007)

[7] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
Grégoire Sutre, Software Verification with BLAST.
235-239, Electronic Editions (Springer LINK)

[8] I. Beer, S. Ben-David, C. Eisner and Landvar 1996:
RuleBase-an industry-oriented formal verification tool,
Proceedings of 3rd Design Automation Conference (DAC),
Asociation for Computing Machinery Inc.,(1996), 655-660.

[9] C.M. Prashanth, Dr. K.C. Shet, Janees Elamkulam 2007, “A
Reality chek of model checking the UML statechart models
and research directions”, International conference on
Computers, Communication, Control systems and

Instrumentation, Bangalore, India , 21-22 (November 2007)
pp 16-22.

[10] Valmari A. 1998: The State explosion Problem, Lectures on
Petri Nets I: Basic Models, LNCS 1491, Springer-Verlag
(1998) , 429-528

[11] Rational software 2007, IBM, Microsoft et al, UML
semantics OMG document: (visited on 02/09/2007).
ftp://ftp.omg.org/pub/docs/ad/97-08-04.pdf

[12] D. Harel 1987, Statecharts: A Visual Formalism for Complex
Systems, Science Computer Programming 8, (1987), 231-
274.

[13] Diego Latella, Istvan Majzik and Mieke Massink, 1999
Automatic verification of a behavioural subset of UML
statechart diagrams using the SPIN model checker,
Formal Aspects of Computing, volume 11(6), (1999), 637-
664

[14] G.J. Holzmann et.al., 1998 Implementing statecharts in
PROMELA/SPIN, proc. workshop on industrial
strength formal specification techniques WIFT’98,
USA, IEEE computer society, (1998).

[15] Adam Darvas et.al., 2002 Verification of UML statechart
models of embedded systems 5th IEEE design & diagnostics
of electronic circuits and systems workshop, (2002),70 -77

