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ABSTRACT
The model based development is a widely accepted phenomenon 
to build dependable software. This has lead to development of 
tools which can generate deployable code from the model. Hence, 
ensuring the correctness of such models becomes extremely 
important. Model checking technique can be applied to detect 
specification violations in such models at the early stage of 
development life cycle. In practice, such validations are done 
using off-the-shelf model checkers. This technique though 
popular has a drawback that, model should be described in the 
native language of the model checker. In this paper, we propose a 
framework for the verification of the dynamic behavior of 
reactive systems modeled using UML (Unified Modeling 
Language) statechart diagrams. The model is translated to an 
intermediate representation by parsing the information embedded 
behind the UML statecharts, this intermediate representation is 
used for checking the safety violations. Verification framework 
proposed is scalable to complex systems.  

D.2.4 [Software Engineering]: Software/Program Verification – 
Model Checking:

General Terms: Design, Verification
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1 INTRODUCTION
The development of dependable software has been the major goal 
for the advent of software engineering discipline. The traditional 
way of verifying software systems is through human inspection, 
simulation, and testing. Though these methods are cost effective, 
unfortunately these approaches provide no guarantee about the 
quality of the software. Human inspection is limited by the 
abilities of the reviewers, simulation and testing can only explore 
a minuscule fraction of the state space of any software system. 
Model driven software development has been a prominent means 
to enhance the understandability of the system’s structure and 

behavior. It has prompted industries to develop tools which can 
generate the code from the model in high level languages like C, 
C++ or JAVA (IBM’s Rational Rose RT [1] is one such tool for 
the development of embedded real time systems). As deployable 
binaries are generated from the model, ensuring model’s 
correctness becomes highly essential. The commonly used formal 
model verification technique is model checking. Model checking 
[2] is a pragmatic technique that, given a finite-state model of a 
system and a logical property (expected system property), 
systematically checks whether model holds the property or not. If 
the model does not hold the expected property, an error trace (also 
called as counter example) is generated. The original model can 
be refined by leveraging information generated by the counter 
example; this approach is known as counter example guided 
model refinement [3]. Several model checking tools like SPIN 
(Simple Promela INterpreter) [4], SMV (Symbolic Model 
Verifier) [5], SLAM[6], BLAST (Berkeley Lazy Abstraction 
software verification Tool) [7] and RuleBase [8] are in existence. 
The major drawback of using model checking tools for 
verification is that, they expect system to be modeled using their 
proprietary input language. The input languages of most of these 
tools are text based and lacks advantages of visual representation. 
Numerous researchers have tried to address this issue. We have 
done thorough review of the earlier works [9] and found that, 
though they suggest modeling the dynamic behavior of the system 
using UML(Unified Modeling Language) statechart diagrams 
(provides visual representation to the models), subsequently these 
statechart diagrams are translated to the input language of the 
model checker before verification. The translation process 
removes the abstraction of the models and exponentially increases 
the state space of the complex systems. This could lead to state-
explosion-problem [10]. We in this paper present a verification 
frame work which avoids the usage of off-the-shelf-model-
checker and translation of UML statechart models to input 
language of the model checker, hence the state explosion is 
minimized.  

In the next section we provide necessary introduction to UML 
statechart diagram and in section 3, framework for verification of 
complex reactive systems is presented. We draw conclusions in 
section 4. Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.
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2 BACKGROUND

2.1 UML Statechart diagram 
The Unified Modeling Language is a general purpose visual 
modeling language that is designed to specify, visualize, construct 
and document the artifacts of the software system The UML is 
simple, powerful and based on a small number of core concepts 
that most object oriented developers can easily learn and apply. 
The UML specification consists of two interrelated parts: 

� UML semantics1: A meta model that specifies the 
abstract syntax and semantics of the UML object 
modeling components 

� UML Notation: A graphic notation for the visual 
representation of the UML semantics 

The UML has a collection of graphical notations each with a well 
defined semantics. It allows construction of several diagrams 
using these notations and relationship among them. These 
diagrams aid to visualize a system from different perspectives. 
The UML includes class diagram, sequence diagrams and 
statechart diagrams that can be used to specify both structural 
(class diagrams) and dynamic (sequence and statechart diagrams) 
views of software systems.  

The UML statechart diagrams are used for behavioral modeling of 
the software and greatly increase the understanding of a system 
by revealing inconsistencies, ambiguities, and incompleteness that 
might otherwise go undetected. The statecharts were first 
introduced by David Harel in 1987 [12] as a visual formalism for 
complex reactive systems. The primary motivation behind this 
model was to overcome the limitations inherent in conventional 
state transition diagrams (or state diagrams for short) to describe 
the complex systems. State diagrams are directed graphs, with 
nodes denoting states, and arrows denoting the transitions. The 
UML statechart diagrams extend state diagrams to include notions 
of hierarchy (ability to cluster many states into a super state) and 
concurrency (orthogonality). Statechart shows sequence of states 
that an object goes through during its life cycle in response to 
stimuli, together with its responses and actions. A state in a 
statechart is represented by rounded rectangle and can be 
recursively decomposed into exclusive states (OR-state) or 
concurrent states (AND state). A simple transition may have a 
triggering event (whose occurrence cause the transition to take 
place), an enabling guard condition (which must be true for the 
transition to be taken), and output event and actions, all of which 
are optional. When a transition in a statechart is triggered (i.e. an 
event is received and guard condition becomes true), the object 
leaves its current state, initiates the action(s) for that transition 
and enters a new state. Any internal or external event is 
broadcasted to all states of all objects in the system. Transitions 
between concurrent states are not allowed, but synchronization 
and information exchange is possible through events.  The 
transitions are represented by directed arrows with labels showing 
triggering event guard condition and actions (optional). An initial 
state is shown as a small solid filled circle and a final state is 
shown as a circle surrounding a small solid filled circle. The final 
state represents the completion of activity in the enclosing state   
                                                                
1 It is not discussed in this paper and interested readers can refer to [11] for 

details.

The Fig.1a is an abstraction of hypothetical “Training” system, 
modeled using UML statechart diagram. The Figures 1b and 1c 
shows expansion of Attend Course and Examination states of Fig 
1a into concurrent sub states (AND states) and sequential sub 
states (OR states) respectively. Visually AND state is depicted by 
splitting the state using dashed lines as shown in Fig. 1b. The 
Fig.1d shows completely expanded/flattened view of the abstract 
model, called global representation (without hierarchy). 

Figure 1 a. Abstract statechart model of “Training system”

Figure 1 b. Concurrent refinement

Figure 1 c. Sequential refinement

2.2 Earlier works 
A widely known approach for verifying the complex systems is, 
by modeling them in the input language (mostly text-based) of the 
off-the-shelf model checker and passing them on to model 
checker. The property expected is specified in temporal logic. 
Subsequently, the need of visual formalism to the models was 
realized and UML statecharts were used for modeling dynamic 
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behavior of the system. The verification of such models is done 
by first representing the UML statecharts in Extended 
Hierarchical Automata (EHA) [13] [14] [15] and then mapping to 
input language of the model checker. This approach is well 
received and successful for less complex systems. As the 
complexity of the system grows, this technique of flattening 
(removal of abstraction) the original model during verification 
would lead to “state-explosion” and hence aborts the verification 
process.

Figure 1 d. Global representation 

3 VERIFICATION FRAMEWORK 
In this section, we present a framework, which supports the 
construction of automated safety violation analysis tools for UML 
statechart diagrams. This can be integrated with industrial CASE 
tools (which generate code from the models) for verifying models  

3.1 Methodology
Our approach depicted in Fig. 2 does not use off-the-shelf model 
checker and hence translation to any other modeling language is 
avoided. The logics of the UML statechart diagram are captured 
in a textual format and then the same is converted to state space 
graph (Kripke Structure). Unlike most of the model checkers, here 
the data structure preserves the abstraction and whole state space 
graph is not brought into memory at once. The verification is 
done iteratively so that the state explosion problem discussed 
earlier in the paper would be minimized. 

3.2 Architecture
The architecture of UML model verifier shown in Fig. 3, 
automatically searches the complete set of states of the state space 
for an incorrect behavior and out puts error trace if any. There are 
four principal components, viz., 

� The UML editor 
� Model compiler 
� Property extractor 
� Checker

The UML editor allows creating both abstract and concrete 
statechart models of the reactive systems. It supports all UML 

visual notations and semantics to capture all important design 
decisions. The user is prompted to enter relevant information as 
(s) he creates the model. This .information is later used by “model 
compiler” for constructing intermediate representation of the 
model.

The Model Compiler reads the UML statechart model and 
generates an intermediate representation of the same by parsing 
the UML statechart. This intermediate textual representation is 
eventually translated to state space graph. 

Figure 2. Verification model for UML statecharts 

The Property Extractor extracts model properties such as set of 
valid states, transitions and events from the textual form and the 
state space graph. It also gets safety property to be verified from 
the external world.

The Checker searches the state space iteratively for the safety 
violations. It outputs “Yes”, if the specified safety property holds, 
otherwise outputs “No” and the error trace (counter example). As 
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this is the core part of the verifier we discuss in detail, the 
technological aspects of this module in the next section. 

3.3 Checker Algorithm 
Detection of bad states in huge state space graph becomes hard at 
times. This is due to the limited availability of resources, memory 
in particular. Therefore devising a memory efficient algorithm is 
indispensable.

An iterative search approach is presented below: 

Step 1:  Start from the abstract level 
Step 2:  Let S represents set of reachable sates (given by  

  property extractor)  
Step 3:  Let Ø be the expected property (let Ø be the safety  
              violation or bad state) 
Step 4:  Let I be the set of initial states (given by property  
             extractor)  
Step 5:  Find out set s which can be reached in one step from  

  the current state 
Step 6:  Search the resulting s to find Ø 
Step 7:  Iterate the steps 5 and 6 until no new states are visited  

  or Ø is found. 
Step 8:  Deepen/expand the part of the model and iterate the  

   steps 2 through 7, until all the parts of the model is  
   exhaustively searched 

Step 9:  If Ø is not found output “Yes” otherwise output “No”  
   and path from the initial state. 

This divide and conquer search algorithm is memory efficient as 
it does not keep the entire state-space of the model in the memory 
instead iteratively expands the model. 

Figure 3. High-level design of UML model verifier 

4 CONCLUSIONS
Most of the existing approaches translate UML statechart model 
into text based modeling language which can then be verified 
using off-the-shelf model checker. This translation process 
removes the salient features of the statecharts like hierarchy or 
abstraction. In other words, flattening of the statecharts leads to 
large state space requirement and makes verification approach not 
scalable to complex systems. The proposed iterative verification 
technique does not keep the entire state space of the UML 
statechart models in the memory. Hence, system with large state 
space can be handled efficiently. The usage of off-the-shelf model 
checker for verification of UML statechart models is avoided 
here; therefore no translation of UML models to the proprietary 
language of the model checker is necessary. 
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