
International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 51

Intelligent Test Case Optimizer - An automated Hybrid
Genetic Algorithm based test case optimization framework

D.Jeya Mala
Lecturer, Dept.of Computer

Applications, Thiagarajar College of
Engineering, Madurai, Tamil Nadu,

India

djmcse@tce.edu

S.Ruby Elizabeth
Software Engineer, Tata Consultancy
Services, Chennai, Tamil Nadu,India.

rubielizabeth.s@tcs.co

Dr.V.Mohan
Professor & Dean, Thiagarajar

College of Engineering,
Madurai,Tamil Nadu India

ABSTRACT
In software testing process, generation and selection of test cases
requires a lot of human intervention. Such manual testing process
leads to ineffective software testing process which in turn
increases the total time and cost needed in it. To deliver zero-
defect software, the number of test cases needed to test the
software will be infinite. Since exhaustive testing is not possible,
we need to reduce the number of test cases by selecting the
optimal test cases that have the high potential of identifying the
errors in Software under Test (SUT). Hence, we need to generate
the optimal test cases, which are able to identify the artificially
seeded faults or errors (Mutation Score) in the Software under
Test (SUT). In our approach, we proposed a Hybrid Genetic
Algorithm (HGA) based novel testing methodology that can
generate optimal test cases from the set of test cases based on the
mutation score (the number of artificially seeded errors in the
Software) that achieves high statement coverage criterion by
finding more seeded bugs in the SUT. The reduction in the
number of test cases by means of Hybrid Genetic Algorithm
based optimization results in the saving of testing resources.
Finally, we compared Simple Genetic Algorithm (SGA) based
test case optimization approach with our approach and proved
that, HGA based approach is producing better optimization
results.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Quality.

General Terms
Measurement and Verification.

Keywords
Software Testing, SUT (Software Under Test), Test Optimization,
Simple Genetic Algorithm (SGA), Hybrid Genetic Algorithm
(HGA), and Mutation Score.

1 INTRODUCTION
The application of Evolutionary Computation (EC) techniques in
Software Engineering (SE) is an emerging area of research that
brings about the cross fertilization of ideas across two domains
[6]. A number of published works, for examples [2] [3] and [9],
have begun to examine the effective use of EC for SE related
activities which are inherently knowledge intensive and human-
centered.

Some of the research works applied Simple Genetic Algorithms
(SGA) for test data generation [4] [13]. In Simple Genetic
Algorithm (SGA), although the search is not exhaustive, the
algorithm can get stuck in local extreme, thus fails to find a global
optimum of the fitness function. In other words, GA is usually
very fast in finding a good solution, but in general they will not
find the best solution [2]. In our paper, we concentrate on the
optimal generation of test cases from the solution space using
HGA (Hybrid Optimization Algorithm).

The method such as Genetic Algorithm (GA) is inefficient for
fine-tuning solutions once a near global minimum is found. For
problems that contain several local minima, a hybrid approach
starting with a global method and then fine-tuning with a local
method may be more attractive, especially if the decision space is
reasonably well behaved near the solution [10][15]. Hence, in this
paper, we implemented HGA based test case generation and
optimization framework using Java. Also, we compared SGA
(Simple Genetic Algorithm) and HGA (Hybrid Genetic
Algorithm) methods for generating the optimal test cases from the
repository of test cases and proved that our framework achieves
higher code coverage criterion and higher mutation score for error
detection.

2 HYBRID GENETIC ALGORITHM
(HGA) – INTRODUCTION

The Hybrid Genetic Algorithm (HGA) is also called as Memetic
algorithm. It is a population based approach for heuristic search
in optimization problems. They are more efficient than Simple
Genetic Algorithms (SGAs) in which a local search algorithm is
also included so that, the final result will have global optima [11].
Search based approaches have been adopted for test case
generation in highly safety critical systems [14]. HGA combines
both GA and local search (GA-LS) approaches. They are
generally more effective than using stand alone versions of each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 52

method [7]. They execute order of magnitude faster than
traditional Genetic algorithms [12].

Here the generations are called as memes not as genes and they
are processed and improved based on the local search algorithm
employed by the individuals. They are used to solve complex
problems in which the shortest path to the goal to be identified.
They are also called as meta-heuristic algorithms [11].

3 PROPOSED APPROACH – HYBRID
GENETIC ALGORITHM BASED TEST
CASE GENERATION AND
OPTIMIZATION FRAMEWORK

The effectiveness of the test cases is depending on the application,
testing approach or the availability of the testing resources.
Optimizing the test case generation is one of the ways to reduce
the number of test cases and improving the effectiveness of test
cases. In our approach, we employed Hybrid Genetic Algorithm
for optimal generation of test cases.

In the proposed framework the Software under Test (SUT) is
given as input. The framework has a mutant generator which
generates the mutated versions of the given SUT. Based on
coverage analysis and mutation score analysis the test case is
either selected or rejected [5].

The algorithm works as below:
Step 1:
 Initialize population randomly
Step 2:

1. Apply RemoveSharp algorithm to all test
cases in the initial population
2. Apply LocalOpt algorithm to all test
cases in the initial population
Step 3:

� Select two parents based on the mutation score.
� Apply Crossover between parents and generate an

offspring
� Apply RemoveSharp algorithm to offspring.
� Apply LocalOpt algorithm to offspring.
� If Mutation Score(offspring) > Mutation Score(any one

of the parents) then replace the weaker parent by the
offspring

Step 4:
Mutate the selected test cases / parents to generate the
next population

Step 5:
Repeat steps 3 and 4 until end of specified number of
iterations.

A Hybrid Genetic Algorithm is designed to use heuristics for
improvement of off-spring produced by crossover and mutation.
Initial population is randomly generated. The off-spring is
obtained by n-point crossover and mutation between two selected
parents.

The improvement heuristics RemoveSharp and LocalOpt are used
to bring the offspring to a local maximum [7]. If the fitness of the
offspring thus obtained is greater than the fitness of any one of the
parents then the parent with lower fitness is removed from the
population and the offspring is added to the population. If the
fitness of the offspring is lesser than that of both of its parent then
it is discarded.

3.1 Chromosomal Representation
Here each meme is considered as a test case. Each chromosome
represents a legal solution to the problem and is composed of a
string of memes.

In software testing we represent the chromosome as the stream of
methods to be called in each class along with the arguments.

For example, the chromosome of Binary Search Tree Algorithm
construction program may be represented as follows:

 (insert (3), search(1),insert(1),search(0))
Where insert and search are methods and the numbers in the
brackets represents the value to be inserted or searched and is
passed as an argument to the method.

When selecting a particular method with a value, it must produce
the right result. The sequence of operations are given here as the
test cases. In our case it is insert and search. They are combined
for checking different conditions in the binary search tree.

3.2 Initial Population
Once a suitable representation has been decided upon for the
chromosomes, it is necessary to create an initial population to
serve as the starting point for the genetic algorithm. This initial
population is usually created randomly.

3.3 Crossover and Mutation
Step1: Apply Multipoint cross over on parents to generate a
population of off springs.
Step 2: Select two optimal off springs from the generated off
springs based on their mutation score using local search
technique.
Step 3: Replace a parent with the optimal individual by using the
following condition:

If mutation_score(offspring) > mutation_score(parent)
then replace the parent with offspring
Else retain the existing parent.

Step 4: Mutate the selected parent before going to the next
generation.
Step 5: Repeat steps 1 to 4 till the termination condition is
reached.

3.4 Selection
We need to select chromosomes from the current population for
reproduction. If we have a population of size 2N, the selection
procedure picks out two parent chromosomes, based on their
fitness values, which are then used by the crossover and mutation
operators (described below) to produce two offspring for the new
population [15].

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 53

Fitness evaluation involves defining an objective or fitness
function against which each chromosome is tested for suitability
for the environment under consideration [1]. As the algorithm
proceeds we would expect the individual fitness of the "best"
chromosome to increase as well as the total fitness of the
population as a whole. We have chosen the mutation score as the
fitness value.

Let’s assume that we have a perfect test suite, one that covers all
possible cases. Let’s also assume that we have a perfect program
that passes this test suite. If we change the code of the program
which is called as mutation and we run the mutated program
which is called as a mutant against the test suite, we will have two
possible scenarios:

� The results of the program were affected by the code
change and the test suite detects it. If this happens, the mutant
is called a killed mutant [8] [9].
� The results of the program are not changed and the test
suite does not detect the mutation. The mutant is called an
equivalent mutant [8] [9].

The ratio of killed mutants to the total mutants minus equivalent
mutants provides the measures on how sensitive the program is to
the code changes and how accurate the test suite is [8].

Mutation score = (dead mutants)/(total mutants – equivalent
mutants) * 100
We used the tool Jester [16] to create mutants in the software and
mutation score is extracted from the resultant XML file to judge
the fitness of test suite.

3.5 Remove Sharp Algorithm
Mutation Score of all the offspring produced by the n point
crossover is calculated. The offspring which are leaving the more
number of mutants in survival will be deleted from the memory.
That is the test cases having very less mutation score will be left.
Test cases having higher mutation score will be memorized.

3.6 Local Opt Algorithm
At every generation of offspring by the n point crossover, the
offspring which is having highest mutation score is selected as
local optima. This local optimal solution compared against the 2
parents. If any of the offspring better than the any one of the
parent then the weakest parent will be replaced by the optimal
offspring.

4 IMPLEMENTATION AND RESULTS
The bench mark problem we took here is a “Binary Search Tree
Algorithm”. We considered that it has two methods namely
search and insert. We should generate test cases to identify
whether the elements are inserted at the right position in the tree
and whether searching of elements are properly done.

We implemented the Test case optimization by using both Simple
Genetic Algorithm and Hybrid Genetic Algorithm using Java.
Seed population is randomly generated and 30 generations are
generated by using SGA and HGA. Mutation score of each test
case is calculated using Jester tool (which is used to test the test
cases written in junit). The output produced by Jester tool is an

XML file that has the mutation score of each of the test cases
generated.

We developed XML parser code using Java to parse the XML
output file for getting the mutation score. This is used as input for
the Local Optimum and Remove Sharp algorithms. Then by
applying our proposed algorithm, we finally arrived at an optimal
test suite when the termination condition is reached.

Figure 1 - Initial Population Generation
Cross Over Results:
Parent1: insert(3), search(4), insert(0), search(4), search(2)
Parent2: search(0), insert(4), insert(0), search(4), search(4)

offspring or children:
Parent 1 with 2:
1. insert(3),insert(4),insert(0),search(4),search(4)
2. insert(3),search(4),insert(0),search(4),search(4)
3. insert(3),search(4),search(3),search(4),search(4)
4. insert(3),search(4),search(3),search(4),search(4)
Parent 2 with 1:
1. search(0),search(4),search(3),search(4),search(2)
2. search(0),insert(4),search(3),search(4),search(2)
3. search(0),insert(4),insert(0),search(4),search(2)
4. search(0),insert(4),insert(0),search(4),search(2)

Figure 2 - Local Optimal Algorithm Implementation

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 54

Figure 3 - Final Optimal Test Case Generation

4.1 Comparison - SGA Vs. HGA
Mutation score of each test case generated using SGA and HGA
are listed in the table 1. The comparison chart shows that, SGA is
striking at local optima and is also suffering a lot of fluctuations
whereas HGA shows the gradual improvement in the generation
of test cases having higher mutation score.

Table 1: Mutation Score for SGA and HGA

Generation GA (ms) HGA(ms)

0 13 36

1 8 37

2 20 52

3 31 52

4 37 52

5 49 64

6 46 64

7 36 64

8 40 64

9 34 68

10 22 72

HGA Vs GA

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11

Generation

M
ut

at
io

n
Sc

or
e

GA (ms)
HGA(ms)

Figure 4 - Comparison Chart of SGA Vs. HGA

5 CONCLUSION
Our proposed approach has proved that, HGA will be a better
solution for Test Case Optimization problems. By using HGA we
can improve the cost and time factors in automated testing
process. Less human intervention makes this technique an
intelligent one. As a future enhancement, we need to compare
HGA against Bacteriologic algorithm which is having the swarm
intelligence in it and by means of that; we can identify how for
HGA will be suitable in producing optimized test cases in test
optimization.

6 ACKNOWLEDGMENTS
We thank the Lord Almighty for finishing this work and
developed the framework as a complete tool. Also, we would like
to extend our regards to our institution for providing us enough
resources to complete this work.

7 REFERENCES
[1] Andrew Baresel, Harman Sthamer, Michel Schmidt, ”Fitness

function design to improve evolutionary testing”, SBSE-
2001

[2] Benoit baurdy , Frank fleurey, Jean marc and Yves Le Traon,
”Automatic test case optimization: A Bacteriologic
algorithm”, Mar/Apr 2005 IEEE software,pp-76-81

[3] Briand, L. C.,“On the many ways Software Engineering can
benefit from Knowledge Engineering”, Proc. 14th SEKE,
Italy, pp. 3-6, 2002

[4] “EvoTest : Test Case Generation using Genetic
Programming and Software Analysis”- Thesis by Arjan
Seesing, Delft University of Technology

[5] Horgan, J., London, S., and Lyu, M., “Achieving Software
Quality with Testing Coverage Measures”, IEEE Computer,
Vol. 27 No.9 pp. 60-69, 1994

[6] Huaizhong Li and C.Peng Lam, “Software Test Data
Generation using Ant Colony Optimization”, Transactions
on Engineering, Computing and Technology, 2004, ISSN
1305-5313.

[7] G.Andal Jayalakshmi, S.Sathiamoorthy ,R.Rajaram, ,”A
Hybrid Genetic Algorithm- A new approach to solve
traveling salesman problem”, Proceedings of DETC’02
ASME 2002 Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

[8] Jeromy S.Bradbury, “Using Mutation for the Assessment and
optimization of tests and properties”, ACM, 2006

[9] Louire Williams, “Mutation Testing”, NC State University,
Offutt & Untch, Mutation 2000: Uniting the Orthogonal,
2004

[10] Li, H., Lam, C.P., “Optimization of State-based Test Suites
for Software Systems: An Evolutionary Approach”,
International Journal of Computer & Information Science,
Vol. 5, No. 3, pp. 212-223, 2004

[11] Natalio Krasnogor and Jim Smith, “A Tutorial on Competent
Memetic Algorithms: Model, Taxonomy and Design Issues”,
IEEE Transactions on Evolutionary Computation,
Vol.ANo.B.CCC200D, 2005

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 55

[12] Pedrycz, W., Peters, J. F., “Computational Intelligence in
Software Engineering”, World Scientific Publishers, 1998.

[13] Roy P. Pargas, Marry John Harrold, Robert R.Perk, ”Test
data generation using genetic algorithm” Journal of Software
testing, verification and reliability, 1999,pp-1-19

[14] Tracey, N., Clark, N., .Mander K., and McDermid, N., “A
Search Based Automated Test Data Generation Framework

for Safety Critical Systems”, in Systems Engineering for
Business Process Change (New Directions), Henderson P.,
Editor, Springer Verlag, 2002

[15] Vincent Kelner, Florin Capitanescu, Oliver Leonard and
Louis Wehenkel, “An Hybrid Optimization Technique
coupling Evolutionary and Local Search Algorithms”, 2004

[16] www.jester.com

