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ABSTRACT
In software testing process, generation and selection of test cases 
requires a lot of human intervention. Such manual testing process 
leads to ineffective software testing process which in turn 
increases the total time and cost needed in it. To deliver zero-
defect software, the number of test cases needed to test the 
software will be infinite. Since exhaustive testing is not possible, 
we need to reduce the number of test cases by selecting the 
optimal test cases that have the high potential of identifying the 
errors in Software under Test (SUT). Hence, we need to generate 
the optimal test cases, which are able to identify the artificially 
seeded faults or errors (Mutation Score) in the Software under 
Test (SUT). In our approach, we proposed a Hybrid Genetic 
Algorithm (HGA) based novel testing methodology that can 
generate optimal test cases from the set of test cases based on the 
mutation score (the number of artificially seeded errors in the 
Software) that achieves high statement coverage criterion by 
finding more seeded bugs in the SUT. The reduction in the 
number of test cases by means of Hybrid Genetic Algorithm 
based optimization results in the saving of testing resources. 
Finally, we compared Simple Genetic Algorithm (SGA) based 
test case optimization approach with our approach and proved 
that, HGA based approach is producing better optimization 
results.

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Quality. 

General Terms 
Measurement and Verification. 

Keywords 
Software Testing, SUT (Software Under Test), Test Optimization, 
Simple Genetic Algorithm (SGA), Hybrid Genetic Algorithm 
(HGA), and Mutation Score. 

1 INTRODUCTION
The application of Evolutionary Computation (EC) techniques in 
Software Engineering (SE) is an emerging area of research that 
brings about the cross fertilization of ideas across two domains 
[6]. A number of published works, for examples [2] [3] and [9], 
have begun to examine the effective use of EC for SE related 
activities which are inherently knowledge intensive and human-
centered.

Some of the research works applied Simple Genetic Algorithms 
(SGA) for test data generation [4] [13]. In Simple Genetic 
Algorithm (SGA), although the search is not exhaustive, the 
algorithm can get stuck in local extreme, thus fails to find a global 
optimum of the fitness function. In other words, GA is usually 
very fast in finding a good solution, but in general they will not 
find the best solution [2]. In our paper, we concentrate on the 
optimal generation of test cases from the solution space using 
HGA (Hybrid Optimization Algorithm).  

The method such as Genetic Algorithm (GA) is inefficient for 
fine-tuning solutions once a near global minimum is found. For 
problems that contain several local minima, a hybrid approach 
starting with a global method and then fine-tuning with a local 
method may be more attractive, especially if the decision space is 
reasonably well behaved near the solution [10][15]. Hence, in this 
paper, we implemented HGA based test case generation and 
optimization framework using Java. Also, we compared SGA 
(Simple Genetic Algorithm) and HGA (Hybrid Genetic 
Algorithm) methods for generating the optimal test cases from the 
repository of test cases and proved that our framework achieves 
higher code coverage criterion and higher mutation score for error 
detection.

2 HYBRID GENETIC ALGORITHM 
(HGA) – INTRODUCTION 

The Hybrid Genetic Algorithm (HGA) is also called as Memetic 
algorithm.  It is a population based approach for heuristic search 
in optimization problems. They are more efficient than Simple 
Genetic Algorithms (SGAs) in which a local search algorithm is 
also included so that, the final result will have global optima [11]. 
Search based approaches have been adopted for test case 
generation in highly safety critical systems [14]. HGA combines 
both GA and local search (GA-LS) approaches. They are 
generally more effective than using stand alone versions of each 
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method [7]. They execute order of magnitude faster than 
traditional Genetic algorithms [12]. 

Here the generations are called as memes not as genes and they 
are processed and improved based on the local search algorithm 
employed by the individuals. They are used to solve complex 
problems in which the shortest path to the goal to be identified. 
They are also called as meta-heuristic algorithms [11]. 

3 PROPOSED APPROACH – HYBRID 
GENETIC ALGORITHM BASED TEST 
CASE GENERATION AND 
OPTIMIZATION FRAMEWORK 

The effectiveness of the test cases is depending on the application, 
testing approach or the availability of the testing resources. 
Optimizing the test case generation is one of the ways to reduce 
the number of test cases and improving the effectiveness of test 
cases.  In our approach, we employed Hybrid Genetic Algorithm 
for optimal generation of test cases.

In the proposed framework the Software under Test (SUT) is 
given as input. The framework has a mutant generator which 
generates the mutated versions of the given SUT. Based on 
coverage analysis and mutation score analysis the test case is 
either selected or rejected [5]. 

The algorithm works as below:
Step 1: 
 Initialize population randomly 
Step 2: 

1. Apply RemoveSharp algorithm to all test 
cases in the initial population 
2. Apply LocalOpt algorithm to all test 
cases in the initial population 
Step 3: 

� Select two parents based on the mutation score. 
� Apply Crossover between parents and generate an 

offspring
� Apply RemoveSharp algorithm to offspring. 
� Apply LocalOpt algorithm to offspring. 
� If Mutation Score(offspring) > Mutation Score(any one 

of the parents) then replace the weaker parent by the 
offspring

Step 4: 
Mutate the selected test cases / parents to generate the 
next population 

Step 5: 
Repeat steps 3 and 4 until end of specified number of 
iterations.

A Hybrid Genetic Algorithm is designed to use heuristics for 
improvement of off-spring produced by crossover and mutation. 
Initial population is randomly generated. The off-spring is 
obtained by n-point crossover and mutation between two selected 
parents.

The improvement heuristics RemoveSharp and LocalOpt are used 
to bring the offspring to a local maximum [7]. If the fitness of the 
offspring thus obtained is greater than the fitness of any one of the 
parents then the parent with lower fitness is removed from the 
population and the offspring is added to the population. If the 
fitness of the offspring is lesser than that of both of its parent then 
it is discarded. 

3.1 Chromosomal Representation 
Here each meme is considered as a test case. Each chromosome 
represents a legal solution to the problem and is composed of a 
string of memes.

In software testing we represent the chromosome as the stream of 
methods to be called in each class along with the arguments.  

For example, the chromosome of Binary Search Tree Algorithm 
construction program may be represented as follows: 

 (insert (3), search(1),insert(1),search(0)) 
Where insert and search are methods and the numbers in the 
brackets represents the value to be inserted or searched and is 
passed as an argument to the method. 

When selecting a particular method with a value, it must produce 
the right result. The sequence of operations are given here as the 
test cases. In our case it is insert and search. They are combined 
for checking different conditions in the binary search tree. 

3.2 Initial Population 
Once a suitable representation has been decided upon for the 
chromosomes, it is necessary to create an initial population to 
serve as the starting point for the genetic algorithm. This initial 
population is usually created randomly.  

3.3 Crossover and Mutation 
Step1:  Apply Multipoint cross over on parents to generate a 
population of off springs. 
Step 2: Select two optimal off springs from the generated off 
springs based on their mutation score using local search 
technique.
Step 3: Replace a parent with the optimal individual by using the 
following condition: 

If mutation_score(offspring) > mutation_score(parent) 
then replace the parent with offspring 
Else retain the existing parent. 

Step 4: Mutate the selected parent before going to the next 
generation.
Step 5: Repeat steps 1 to 4 till the termination condition is 
reached.

3.4 Selection
We need to select chromosomes from the current population for 
reproduction. If we have a population of size 2N, the selection 
procedure picks out two parent chromosomes, based on their 
fitness values, which are then used by the crossover and mutation 
operators (described below) to produce two offspring for the new 
population [15]. 
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Fitness evaluation involves defining an objective or fitness 
function against which each chromosome is tested for suitability 
for the environment under consideration [1]. As the algorithm 
proceeds we would expect the individual fitness of the "best" 
chromosome to increase as well as the total fitness of the 
population as a whole. We have chosen the mutation score as the 
fitness value. 

Let’s assume that we have a perfect test suite, one that covers all 
possible cases. Let’s also assume that we have a perfect program 
that passes this test suite. If we change the code of the program 
which is called as mutation and we run the mutated program 
which is called as a mutant against the test suite, we will have two 
possible scenarios:

� The results of the program were affected by the code 
change and the test suite detects it. If this happens, the mutant 
is called a killed mutant [8] [9].  
� The results of the program are not changed and the test 
suite does not detect the mutation. The mutant is called an 
equivalent mutant [8] [9].  

The ratio of killed mutants to the total mutants minus equivalent 
mutants provides the measures on how sensitive the program is to 
the code changes and how accurate the test suite is [8].  

Mutation score = (dead mutants)/(total mutants – equivalent 
mutants) * 100
We used the tool Jester [16] to create mutants in the software and 
mutation score is extracted from the resultant XML file to judge 
the fitness of test suite. 

3.5 Remove Sharp Algorithm 
Mutation Score of all the offspring produced by the n point 
crossover is calculated. The offspring which are leaving the more 
number of mutants in survival will be deleted from the memory. 
That is the test cases having very less mutation score will be left. 
Test cases having higher mutation score will be memorized. 

3.6 Local Opt Algorithm 
At every generation of offspring by the n point crossover, the 
offspring which is having highest mutation score is selected as 
local optima. This local optimal solution compared against the 2 
parents. If any of the offspring better than the any one of the 
parent then the weakest parent will be replaced by the optimal 
offspring.

4 IMPLEMENTATION AND RESULTS 
The bench mark problem we took here is a “Binary Search Tree 
Algorithm”.  We considered that it has two methods namely 
search and insert. We should generate test cases to identify 
whether the elements are inserted at the right position in the tree 
and whether searching of elements are properly done. 

We implemented the Test case optimization by using both Simple 
Genetic Algorithm and Hybrid Genetic Algorithm using Java. 
Seed population is randomly generated and 30 generations are 
generated by using SGA and HGA. Mutation score of each test 
case is calculated using Jester tool (which is used to test the test 
cases written in junit). The output produced by Jester tool is an 

XML file that has the mutation score of each of the test cases 
generated.

We developed XML parser code using Java to parse the XML 
output file for getting the mutation score. This is used as input for 
the Local Optimum and Remove Sharp algorithms. Then by 
applying our proposed algorithm, we finally arrived at an optimal 
test suite when the termination condition is reached. 

Figure 1 - Initial Population Generation
Cross Over Results: 
Parent1: insert(3),  search(4), insert(0), search(4), search(2) 
Parent2: search(0), insert(4), insert(0), search(4), search(4) 

offspring or children: 
Parent 1 with 2: 
1. insert(3),insert(4),insert(0),search(4),search(4) 
2. insert(3),search(4),insert(0),search(4),search(4) 
3. insert(3),search(4),search(3),search(4),search(4) 
4. insert(3),search(4),search(3),search(4),search(4) 
Parent 2 with 1: 
1. search(0),search(4),search(3),search(4),search(2) 
2. search(0),insert(4),search(3),search(4),search(2) 
3. search(0),insert(4),insert(0),search(4),search(2) 
4. search(0),insert(4),insert(0),search(4),search(2) 

Figure 2 -  Local Optimal Algorithm Implementation



International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 54

Figure 3 - Final Optimal Test Case Generation

4.1 Comparison - SGA Vs. HGA 
Mutation score of each test case generated using SGA and HGA 
are listed in the table 1. The comparison chart shows that, SGA is 
striking at local optima and is also suffering a lot of fluctuations 
whereas HGA shows the gradual improvement in the generation 
of test cases having higher mutation score. 

Table 1: Mutation Score for SGA and HGA 

Generation GA (ms) HGA(ms) 

0 13 36 

1 8 37 

2 20 52 

3 31 52 

4 37 52 

5 49 64 

6 46 64 

7 36 64 

8 40 64 

9 34 68 

10 22 72 
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Figure 4 - Comparison Chart of SGA Vs. HGA 

5 CONCLUSION
Our proposed approach has proved that, HGA will be a better 
solution for Test Case Optimization problems. By using HGA we 
can improve the cost and time factors in automated testing 
process. Less human intervention makes this technique an 
intelligent one. As a future enhancement, we need to compare 
HGA against Bacteriologic algorithm which is having the swarm 
intelligence in it and by means of that; we can identify how for 
HGA will be suitable in producing optimized test cases in test 
optimization. 
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