
International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 60

A Novel Approach for Test Case Generation
Using Activity Diagram

Pragyan Nanda
Department of Computer Science

and Engineering, National Institute of
Technology, Rourkela

n.pragyan@gmail.com

Baikuntha Narayan Biswal
Department of Computer Science

and Engineering, National Institute of
Technology, Rourkela

baikunthanarayan@gmail.com

Durga Prassad Mohapatra
Department of Computer Science

and Engineering, National Institute of
Technology, Rourkela

durga@nitrkl.ac.in

ABSTRACT
Testing is an important part of quality assurance in the software
development life cycle. As the complexity and size of software
grow, more and more time and man power are required for testing
the software. Manual testing is very much labor-intensive and
error-prone. So there is a pressing need to develop the automatic
testing strategy. Test case generation is the most important part of
the testing efforts. Test cases can be designed based on source
code but this makes test case generation difficult for testing at
cluster level. Therefore, it is required to generate test cases
automatically from the design documents. Also this approach
holds an added advantage of obtaining test cases early in the
software development life cycle (SDLC), there by making test
planning more effective. Our approach first constructs the activity
diagram for the given problem and then randomly generates initial
test cases, for a program under testing (PUT). Then, by running
the program with the generated test cases, we can get the
corresponding program execution traces (PET). Next, we compare
these traces with the constructed activity diagram according to the
specific coverage criteria. We use a rule based frame work to
generate a reduced test case set, which meets the test adequacy
criteria. Advantage of our approach is that it achieves maximum
path coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging-Testing
tools.

General Terms
Reliability

Keywords
UML Activity diagram, Test case, Program under testing,
program execution traces, Software testing, Rule based frame
work.

1 INTRODUCTION
Testing remains, the most important part of quality assurance in
the practice of software development. Quality of the end product
and effective reuse of software depend to a large extent on testing.
Developers therefore spend considerable amount of time and
effort to achieve through testing. It is well known that software
testing is a time-consuming, error-prone and costly process [3]
[9]. Therefore, techniques that support the automation of software
testing will result in significant cost and time savings for the
software industry. Automatic generation of the test cases is
essential for the automation of software testing. Once the test
cases are generated automatically, a software product can even be
tested fully automatically through a test execution module to
realize an integrated automated test environment.

Generally test cases are designed from program source code [4].
This makes test case generation difficult especially for testing at
cluster levels. Further this approach proves to be inadequate in
component–based software development, where the source code
may not be available with the developers. Therefore generation of
test cases automatically from the software design documents are
essential rather, than code or code-based specifications. It also
holds the added advantages of allowing test cases to be available
early in the software development life cycle (SDLC) there by
making test planning more effective. Again, design oriented
approach tests the generated test data which is independent of any
particular implementation of the design.

In this paper, we use UML activity diagrams as design
specifications and consider the automatic approach to test case
generation by extending [1]. Classification of UML diagrams,
depending on whether they are intended to describe the structural
or behavior aspects of systems. UML activity diagrams [11, 12]
describe the sequential or concurrent control flow of activities.
They can be used to model the dynamic aspects of a group of
objects, or the control flow of an operation. Our approach first
constructs the activity diagram for the given problem and then
randomly generates the initial test cases for a program under
testing (PUT) [6]. The approach is to develop a technique that
will automatically generate test cases with maximal path
coverage.

The rest of the paper is organized as follows. Section 2 illustrates
the UML activity diagram. Various test adequacy criteria are
described in section 3. Section 4 presents our approach to
generate test cases from the activity diagram using a rule based
frame work. Section 5 presents the Future work and conclusion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 61

2 ACTIVITY DIAGRAM
UML provides a number of diagrams to describe particular
aspects of software artifacts. These diagrams can be classified
depending on whether they are intended to describe structural or
behavioral aspects of systems. Activity diagrams also describe the
sequence of activities among the objects involved in the control
flow during implementation. Activity diagrams are similar to
procedural flow charts. But the major difference between them is
that activity diagrams support description of parallel activities and
synchronization aspects involved in different activities. Before
presenting the detailed procedure to generate test cases using
UML activity diagram, we need to define the activity diagram.

Definition. An activity diagram is a eight-tuple ACD = (A, B, F,
J, K, T, C, a0), where

� . A = {a1, a2, …, an} is a finite set of activity states.

� . B = {b1, b2,..., bm} is a finite set of branches.

� . F = {f1, f2, …, fq} a finite set of forks.

� . J = {j1, j2, ..., jr} a finite set of joins.

� . K = {k1, k2, ..., kp} a finite set of final states and end
flows.

� . T = {t1, t2, ..., ts} a finite set of transitions and ts � T

� . C = {c1, c2, ..., cv} is a finite set of guard conditions.

� . a0 is the only initial state and a0.� A

The above descriptions are shown in figure.1.

3 TEST ADEQUACY CRITERIA FOR
ACTIVITY DIAGRAMS

Problem specification is the key factor to get the result accurate,
which is very much important. Therefore, there is a pressing need
for specification of test adequacy criteria, before going to follow
the software testing procedure. The adequacy criteria of activity
diagrams are based on the matching between the paths of activity
diagrams and program execution traces of the implementation
codes.

The description about test adequacy is given in [5, 6] as a
measurement function. Suppose the p is a program, and tcs be the
test cases set. The test adequacy criteria, to generate test cases for
an activity diagram are given below:

� Activity coverage: According to this, all activity states
in the activity diagram should be covered. For any t �
tcs, we can get the program execution trace pet. If there
exists any function in pet whose corresponding activity
is not marked in the activity diagram, we mark all the
corresponding unmarked activities of pet and record the
test case t. So, the value of activity coverage is the ratio
of the marked activities to all activities in the activity
diagram.

� Transition coverage: All transitions in the activity
diagram must be covered. For any t � tcs, we can get
the program execution trace pet. If there exists any
function in pet whose corresponding transition is not

marked in the activity diagram, we mark all the
corresponding unmarked transitions of pet and record
the test case t. So, the value of transition coverage is the
ratio of the marked transitions to all transitions in the
activity diagram.

� Path coverage: All paths in the activity diagram must
be covered. For any t � tcs, we can obtain the program
execution trace pet. If there exists any function in pet
whose corresponding path is not marked in the activity
diagram, we mark all the corresponding unmarked path
of pet and record the test case t. So, the value of path
coverage is the ratio of the marked paths to all paths in
the activity diagram.

Figure.1 Activity diagram

4 HEURISTIC METHOD
In this section we discuss our work to generate test cases
automatically from UML activity diagram. First, we construct the
activity diagram for the given problem. Though, we are using
UML activity diagram to generate the test cases, but not directly.
An indirect approach is being used for automatic generation of
test cases. Next, we use a randomly generated test case [8] as the
initial test case is to get the program execution traces for a
program under testing (PUT). Then by applying a. “heuristic
rule” we get the best test case. At last, by comparing the
execution traces with the constructed activity diagram satisfying
some specification criteria, we get the reduced test cases which
meet the test adequacy criteria.

4.1 Frame work
The schematic outline of the automatic test case generation
strategy is described in figure.2.

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 62

Figure 2: System model

4.1.1 MODEL PARSER/ SCANNER
The purpose of the model parser is to keep the path traversal
details of the activity diagram.

4.1.2 TEST CASE GENERATOR
The test case generator test case generator produces new test
cases that would cover the target branches/conditions in the code
from the structure file and determines what conditions/branches
should be targeted for new case generation

4.1.3 TEST CASE ANALYZER
Test case analyzer evaluates by running each test case in the
program and maintains a track of condition and branch coverage.
If the test case satisfies the coverage criteria it generates a report
otherwise the analysis result is used by test case generator for
further test case generation.

4.1.4 REPORT GENERATOR:
The report generator prints the result which includes the generated
test cases, condition and branch coverage and percentage of path
coverage.

4.2 Paths in the Activity diagram
The selection of path coverage in test case generation is a very
complex task. When a path in the activity diagram is matched, we
delete this path from the path coverage set. Hence the matching
process for activity diagram will terminate when the path
coverage set is empty. The algorithm for simple path searching is
given in [13]. The complexity in path selection is due to the
presence of synchronization, concurrency and loops. Our
approach only considers the paths for selecting the program
execution traces, which satisfies the semantics of the
synchronization such as the join and fork in the activity diagram.
Loops in an activity diagram may result in a path with infinite
activities. From figure 1, we derived the following paths:

start <a0>, <a1>,
< a1 > < a2 >,
< a2 > <a3 >,
< a2 > <a4 >,
< a3> <a8 >,
<a8 > <a9 >,

<a4 > <a5, a6 >,
< a5, a6 > <a7 >,
<a7 > <a9 > end

We have considered simple path to avoid the complexity due to
loops and concurrency, which is beyond the scope of the
discussion.

4.3 Test case generation strategy
We use the heuristic rule to achieve the maximal branch
coverage. A branch coverage analysis is required to get the best
test case (BCASE). The path coverage analysis follows the path
prefix strategy of Prather and Myers [7]. When a path is found,
we should delete this path from the path coverage set. So the
matching process is getting stopped, when the path coverage set is
empty. The branch coverage status of the code is recorded in a
coverage table. When a branch is covered by any test case, the
corresponding entry in the table is marked with a “�”. The target
of the test case generation is to mark all entries in the table.
Therefore, the partially covered transitions are the main targets
for modification, to cover all paths. The uncovered conditions will
not be targeted for new test case generation. Earlier test cases can
be used as models for new cases, because, no test case model yet
exists that can be used for modification.

The main problem arises to select a model test case when, more
than one test case drives the same path. So it is very essential to
identify the goodness of a test case. We define the goodness of a
test case as

� �� �� �)(,)(max2)()(1
1111 tRHStLHStRHStLHS

n
�	
 (1)

where, t1 is a test case, LHS (t1) and RHS (t1) represent the
evaluated value of LHS and RHS, respectively, when t1 is used as
the input data and n is the number of branches covered. Here, we
have considered a typical format of an IF-THEN statement where
the expression (exp) can be expressed in the form of:
LHS<op>RHS. The goodness of a test case, t1, relative to a given
condition can be calculated using the above formula. This
measures the closeness between LHS and RHS [2]. When this
measure is small, it is generally true that a slight modification of
t1 may change the truth value of exp, thus covering the other
branch. The measurement of (1) provides the goodness of a test
case which ranges from 0 to 1. A test case that yields the smallest
measurement is considered to be the best test case of the condition
under consideration. In the following, we present our algorithm to
get the reduced test case, which is given in figure.3.

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 63

Figure.3: The Algorithm for Reduced Test Case Generation.

5 CONCLUSION AND FUTURE WORK
We have proposed an approach to generate the test cases for
object oriented programs from the UML activity diagrams. We
have used a heuristic rule to obtain the reduced test cases, which
satisfy the test case adequacy criteria. In this paper we have
considered only the path (simple) for automatic test case
generation. Our approach achieves the maximum path coverage,
which is an added advantage. Currently, we are working on
developing test cases involving nested fork -joins and branch
nested fork-joins. Also it sees very similarity for Model Driven
Architecture (MDA) [10], which is our next prospective. To the
best of our knowledge no other paper has discussed the use of
heuristic rule for generating test cases from activity diagram.

6 ACKNOWLEDGMENTS
We would like to acknowledge the anonymous reviewers for their
constructive comments that helped us to improve the quality of
this paper.

7 REFERENCES
[1] A. Abdurazik, J. Offutt. 2000. Using UML collaboration

diagrams for static checking and test generation, in:
proceedings of the third International Conference on the

UML, Lecture Notes in Computer Science, Springer-Verlag
GmbH, York, UK, vol.93, 2000, pp. 383-395.

[2] A. Kleppe, J. Warmer, and W. Bast. 2003. MDA Explained:
The Model Driven Architecture–practice and promise.
Addison-Wesley, 2003

[3] C. Mingsong, Q. Xiaokang, and L. Xuandong. 2006.
Automatic Test Case Generation for UML Activity
Diagrams. AST’06, May 23, 2006, Shanghai, China

[4] C. Oriat. Jartege. 2005. A Tool for Random Generation of
Unit Tests for Java Classes. In QoSA/SOQUA, pages
242–256, 2005.

[5] F. Basanieri, A. Bertolino, and E. Marchetti. 2001.
CoWTeSt: A Cost Weighted Test Strategy, Proc. Escom-
Scope 2001, London, 2001

[6] Grade Booch, James Rambaugh, Ivar Jacobson. 2001. The
Unified Modeling Language User Guide, Addison-Wesley,
2001.

[7] H. Zhu, P. Hall, and J. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Computing Surveys,
29(4):366–427, December 1997

[8] H. Zhu and X. He. A Methodology of Testing High-level
Petri Nets.2002. Information and Software Technology,
44(8):473–489, 2002.

[9] K. H. Chang, W. Homer Carlisle, James H. Cross II, and
David B. Brown. 1991 A heuristic approach for test case
generation. ACM.

[10] L. Briand and Y. Labiche. 2002. A UML based approach to
system testing. Software and Systems modeling, 1 (1), 2002.

[11] Object Management Group, UML specification 1.5,
available at http://www.omg.org/uml, 2003.

[12] R.E. Prather and P. Myers, Jr. 1987. The Path Prefix
Software Testing Strategy, IEEE Trans. on Software
Engineering, Vol. SE-13, No. 7, July 1987

[13] W. H. Deason, D. B. Brown, K.-H.Chang, and J. H. Cross II.
1991. A Rule-based Software Test Data Generator, IEEE
Trans. on Knowledge and Data Engineering, March 1991.

begin
BCASE = F; //A Boolean variable.
Supply AD & RTC to TCG as an I/P; /* RTC is
randomly generated test case, AD is activity
diagram, TCG is test case generator. */
Execute PUT with RTC to give PET; /* PET is
program execution traces. */
Apply heuristic rule to TCG to generate best test
case;
While (Path � empty && BCASE �T) {
Run TCG};
end;

