
International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 71

Detection Of Associative Shift Fault In Boolean Expression
R.K. Singh
CDAC, Noida

B-30, Institutional Area, Sector 62
Noida, UP 201 307
+91 120 3063377

rksingh@cdacnoida.in

Pravin Chandra
USIT, GGSIP University

Kashmere Gate
Delhi – 110 006

+91 11 32900318

pc_ipu@yahoo.com

Yogesh Singh
USIT, GGSIP University

Kashmere Gate
Delhi – 110 006

+91 11 32900308

ys66@rediffmail.com

ABSTRACT
The various faults that can affect a Boolean expression have
been classified into various fault models. A number of
techniques for testing Boolean expressions use these fault
models for detecting the errors. However, the fault detection
criterion for Associative Shift Fault for Boolean expression in
Disjunctive Normal Form (DNF) has not been reported. In this
paper we, propose a criteria for detecting Associative Shift Fault
in Boolean expression in DNF.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Boolean Specification, Fault Classes, Mutation Analysis, Fault
Detection Criteria.

1 INTRODUCTION
In high integrity/safety critical system, every decision has to be
handled specially as any failure to do so can result in
unacceptable loss. Each decision may partition the problem into
two branches and each branch has to be handled separately to
achieve the desired results. A fault in a branch statement of a
program can lead to a fault in the program’s execution behavior.
Boolean expressions in Disjunctive Normal Form (DNF) have
been widely used to represent a decision/predicate and a number
of branch testing techniques have been reported in the literature
[2,3,5,7,8,9]. Some of the most widely used branch testing
techniques for testing Boolean expression are MCDC [3],
RCDC [12], Basic Impact Strategy and its variants [13], BOR
Strategy [10], Elmendorf Strategy [4] etc.
In general, if n-variables are present in a given Boolean

expression, then one can construct)12(2 �
n

 expressions that are
not equivalent to the given statement. If the aim of a testing
mechanism/criterion is to establish the non-equivalence of all

these)12(2 �
n

 expressions to the given expression, then n2
test cases corresponding to the truth table of the given Boolean
expression are required [7,13]. That is, exhaustive testing is
required for testing for all non-equivalent expression. Even for
moderate n’s the number of these test cases can become
prohibitively high. Therefore, detection of difference between
the intended function and all other inequivalent expression is not
a feasible approach for testing of Boolean expression. A feasible
approach is to develop models for “realistic” (common) faults
that can occur during implementation and to restrict the
attention of testing to the detection of the faults as represented
by expression that differ from the intended expression due to
these fault (model) based errors. In the software testing
literature various fault model have been reported and are
described in Section 3.

The fault detection criteria for the various faults for Boolean
expression in DNF have been proposed by Kuhn [6], Tsuchiya
and Kikuno [11], Lau and Yu [7]. Out of the fault models
enumerated, ASF were not considered. In this paper, we
propose fault detection criterion for ASF.

This paper is organized as follows: Section 2 discusses the
notations and terminology. Section 3 discusses the fault models
and Associative Shift Fault has been discussed in Section 4.
Section 5 enumerates the fault detection criteria for the ASF and
conclusions are given in Section 6.

2 NOTATIONS AND TERMINOLOGY
Boolean expression are written using Boolean variables and
Boolean operators such as AND, OR and NOT are represented
by ‘.’, ‘+’, ‘¯’ respectively. A Boolean expression in DNF may
consist of one or more product terms (sop term) represented as

mjii ppppppS ��������� � ��� 121 or ��
�

m

i
ipS

1

where ip represents one product term (sop term) of the
Boolean expression and mi ��1 .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 72

Let I denotes the implementation of S. A sop term ip may

consist of one or more literal e.g. i
k

i
j

i
j

i
j

ii
i llllllp �� 1121 �� ��� .

The notation il1 is the 1st literal of the th
ip sop term, i

jl

represents the thj literal � �kj ��1 of the th
ip sop term where

the total number of literal in that sop term are k .

The difference between Specification ‘S’ and Implementation ‘I’
can be represented as IS 	 , where symbol 	 represent

Boolean eXclusive-OR(XOR) [6]. For example,
ii ll

LNFIS 11
	 ,
computes the Boolean difference that will determine the
conditions under which Literal Negation Fault in literal il1 will
cause a failure. For simplicity, we have grouped sop terms
except the term(s) affected by the fault as � . For example, a
Boolean expression is represented as ��� jpS (if the fault

effects the th
jp sop term only). If a fault occurs in the literal j

il

of the th
jp sop term, it is rearranged such that j

il becomes the

first literal jl1 and � represent the remaining literals � �j
k

j ll �2

of the sop term then �j
j lp 1� .

3 FAULT MODEL
 The various kinds of faults [1,5,6,7,9,11,13] that can affect any
expression are classified into the following categories :

 Operator Reference Fault (ORF) : In this class of fault, a
binary logical operator ‘.’ is replaced by ‘+’ or vice versa.

 Expression Negation Fault (ENF) : A sub-expression in the
statement is replaced by its negation .

 Term Negation Fault (TNF): A sop term in a expression is
replaced by its negation.

 Variable Negation Fault (VNF) : An atomic Boolean literal
‘a’ is replaced by its negation (a). This fault is also called
as Literal Negation Fault (LNF).

 Associative Shift Fault (ASF): This fault occurs when an
association among conditions is incorrectly implemented
due to misunderstanding about operator evaluation
properties.

 Missing Variable Fault (MVF) : A condition in the
expression is missing with respect to original expression.

 Variable Reference Fault (VRF): A condition is replaced by
another input which exist in the statement.

 Clause Conjunction Fault (CCF): A condition a in
expression is replaced with ba. , where both inputs a and
b appear in the function.

 Clause Disjunction Fault (CDF): A condition a in
expression is replaced with ba � , where both inputs a and
b appear in the function.

 Stuck at 0: A condition a is replaced with 0 in the function.

 Stuck at 1: A condition a is replaced with 1 in the function.

Faults and their brief illustration are given in Table 1.

4 ASSOCIATIVE SHIFT FAULT (ASF)
Associative Shift Fault in an expression occurs due to the
incorrect placement of the parentheses. ASF changes the
associativity between two or more sop terms resulting into the
change in the output of the Boolean expression from
TRUE(FALSE) to FALSE(TRUE) for some input configuration.
While writing the Boolean expression in DNF form, the opening
parenthesis is placed in the beginning of a sop term and
corresponding parenthesis is placed at the end of another sop
term. For example,

�
�

�

�

�
�

�

�

���

������
�

����

��

m
i
k

i
j

ii

i
i
k

i
j

ii
i

pllll

pllllppp
S

���

���

222
2

2
1

121121 . ASF may

change the location of the opening parentheses, closing
parentheses, or both in a Boolean expression. In expression

�

� �m
i
k

i
j

ii
i

i
k

i
j

ii
i

l
ASF

pllllpllll

pppI
i

�����

�����
����

�

�

�����

�

222
2

2
1121

121
2

,

opening parentheses is wrongly placed before literal il2 in term

ip . If a closing parentheses is wrongly placed before 2�i
kl of

sop term 2�ip , it can be written as

Fault Type Effect of Fault on Boolean
Expression)(ghijcdeabS ���

)(ORF

�).(ghijcdeab �

)(ORF �

)(ghijcdeba ���
 ENF)(ghijcdeab ��
 VNF)(ghijcdeba ��
TNF)(ghijcdeab ��
 ASF)(ghijcdeba ��
 MVF)(ghijcdeb ��
 VRF)(ghijcdecb ��
 CCF)(ghijcdeabc ��
 CDF)(ghijcdegab ���
 SA0)(ghijcde �
SA1)(ghijcdeb ��
Table 1 : Fault Class and Mutant example(s) for the
Boolean Expression :)(ghijcdeabS ��� .

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 73

m
i
ki

j
ii

i
k

i
j

ii
il

ASF pl
lll

pllllppp
I

i
k ���

�

�

�

�
�

�

�

�

������
� �

���

���
�

��

���
2

22
2

2
1

1121121) 2

In case a Boolean expression S suffers from both opening and
closing parentheses fault, it can be shown as

� � � � m
i
k

i
j

ii
i

i
k

i
j

ii
i

ll
ASF pllllpllllpppI

i
k

i
��������� ����

��

�
������ 222

2
2

1121121
2

2

 In this case, the opening parenthesis is wrongly placed before
the literal il2 of sop term ip and the closing parentheses is

placed before literal 2�i
kl of sop term 2�ip . For example, if

ghijcdeabS ��� , then opening bracket fault
�)(

2
2 ghijdecabI l

ASF ��� , closing bracket fault

� �ijghcdeabI l
ASF ���

3
3) and opening and closing bracket fault

� � � �ijghdecabI ll
ASF ���

3
3

2
2 .

5 FAULT DETECTION CRITERIA FOR
ASF

Associative Shift Fault in an expression occurs due to the
incorrect placement of the opening bracket, closing bracket or
both, in a Boolean expression resulting in a change of the
associativity amongst the sop terms [5,9].

5.1 Opening Bracket Fault
If opening bracket fault occurs in the th

jp sop term, it can be

written as � � ����� ��� yxASF
xI (where yxjp ��� with the

opening fault partitioning the th
jp sop term while � is a sub-

expression of the Boolean expression such that 1�� (number

of terms present in � is greater than or equal to 1) and � is the
sum of the rest of the term in the expression i.e. �� ��� jpS .
The fault detection criteria for the opening bracket fault can be

represented as � � � � ������������ ��	���	

yxyxASF

yxyxIS (.
Therefore, the fault detection criteria for the opening bracket
fault can be written as:

�������
xASF

yxyxIS �	
 ((1)

5.2 Closing Bracket Fault
If closing bracket fault occurs at y� partition then it can be

represented as � � ������ ���	 xyASF
xyIS) and this can be

written as � � ���� ��yx . That is, the closing bracket fault is of
the same form as the opening bracket fault. Hence, the fault
detection criteria in this case would be the same as opening
bracket fault. That is, if � and the splitting of the term yx��
due to bracket error in the two cases is same, their detection
criteria is also the same.
5.3 Opening and Closing Bracket Fault

In this case, the opening and closing bracket fault occur
simultaneously in the expression. Then it can easily be seen that
the opening bracket fault detection criterion will also detect this
type of fault provided the sop term being partitioned by the
closing bracket is considered as a part of � . Thus, eq. (1) is the
detection criterion for all types of ASF. If we choose one kp
sop term in sub-expression � to be TRUE and the rest of the
term in � to evaluate to FALSE then also the criteria is met.
That is, we may write the detection criteria as:

�� ˆ
kx p� (2)

where kp is a term in � , by choice of kp , ��
�
�

kjl
l

lp
,

1
�̂ and

each lp is FALSE for eq. (2) to evaluate to TRUE and jp

evaluates to FALSE in eq. (2). It should be noted that x� must
be FALSE that is even jp evaluates to FALSE.

6 CONCLUSIONS
In this paper we have presented the fault detection criteria for
the Associative Shift Fault that is considered to be the strongest
fault in the fault models. The proposed fault detection criteria
guarantee the detection of the ASF fault.

7 REFERENCES

[01] Chen T.Y and M.F Lau. 2001. Test Case Selection
Strategies based on Boolean Specifications. Journal
of Software Testing, Verification and Reliability. 11:
165-180.

[02] Chen, T.Y, M.F Lau, and Y.T. Yu. 1999. MUMCUT:
A Fault-based Strategy for Testing Boolean
specification, 6th Asia Pacific Software Engineering
Conference (APSEC’99): 606-613.

[03] Chilenski J.J. and S. Miller. 1994. Applicability of
Modified Condition/ Decision Coverage to Software
Testing. Software Engineering Journal, 9(5):193-200.

[04] Elmendorf W. R. 1973. Cause-Effect Graphs on
Functional Testing. TR-00.2487, IBM Systems
Development Division, Poughkeepsie, NY.

[05] Kapoor K. 2004. Stability of Test Criteria and Fault
Hierarchies in Software Testing. PhD Thesis, London
South Bank University.

[06] Kuhn D. Richard. 1999. Fault Classes and Error
Detection Capability of Specification-based Testing.
ACM Transactions on Software Engineering and
Methodology 8, 411-424.

[07] Lau M.F. and Y.T Yu. 2005. An Extended Fault Class
Hierarchy for Specification-Based Testing. ACM
Transactions on software Engineering and
Methodology 14 No. 3 : 247-276

International Journal Of Computer Science And Applications Vol. 1, No. 1, June 2008

ISSN 0974-1003

Published by Research Publications, Chikhli, India 74

[08] Lau M.F and Y.T. Yu. 2001. On the Relationships of
Faults for Boolean Specification Based Testing.
Proceedings of Software Engineering Conference :
21-28

[09] Singh R.K., Pravin Chandra, Yogesh Singh. 2006. An
Evaluation of Boolean Expression Testing
Techniques. ACM Software Engineering Notes 31
No. 5:1-6

[10] Tai K.C, M.A. Vouk, A. Paradkar, and P Lu. 1994.
Evaluation of a predicate-based software testing
strategy. IBM Systems Journal 33, No.3: 445-457.

[11] Tsuchiya T. and Kikuno T. 2002. On Fault Classes
and Error Detection Capability of Specification–
Based Testing, Transactions on Software Engineering
and Methodology 11, 58-62.

[12] Vilkomir S. A. and J. P. Bowen. 2002. Reinforced
Condition/Decision Coverage (RC/DC): A New
Criterion for Software Testing. 2nd International
Conference, Formal Specification and Development
in Z and B, Springer-Verlag Lecture Notes in
Computer Science 2272 : 295–313.

[13] Weyuker E.J, T. Gorodia., and A. Singh. 1994.
Automatically Generating Test Data from a Boolean
Specification. IEEE Transactions on Software
Engineering 20 No. 5:353–363.

