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ABSTRACT 
It is an important and a complicated task to investigate the 
convergence of a new genetic algorithm based on quantum 
mechanics concepts including qubits and superposition of states, 
namely Quantum Genetic Algorithm, in the field of evolutionary 
computation. This paper analyzes convergence property of 
quantum genetic algorithm which uses its special quantum 
operator instead of canonical operators of classical genetic 
algorithms, such as crossover and mutation operators and even 
selection techniques. The Markov chain is a considerable part of 
the probability theory and stochastic processes; and one of its 
important applications is to model some classical evolutionary 
algorithms and to analyze their convergence property. In reality, 
inasmuch as modeling of the evolutionary algorithms in usual 
methods is very difficult, the finite Markov chain is used to 
formalize them. In here, the quantum genetic algorithm is 
modeled as a finite Markov chain and is shown by means of 
Markov chain analysis that the algorithm with preservation of the 
best solution in the population, will converge to the global 
optimum.   

Categories and Subject Descriptors 
G.3 [Mathematics of Computing]: Probability and Statistics – 
Markov Processes 

General Terms 
Verification 

Keywords 
Quantum Genetic Algorithm, Finite Markov Chain, Global 
Convergence 

1 INTRODUCTION 
Quantum computing is one of the promising new fields of the 
millennium and offers certain possibilities which are not present 
in classical computing. Although there would be significant 
benefit from new quantum algorithms which could solve 
computational problems faster than classical algorithms, to date, 

only a few quantum algorithms are presented [1][2][3][4]. 

An evolutionary computing algorithm called Quantum Genetic 
Algorithm (QGA) is characterized by principles of quantum 
computing including concepts of qubits and superposition of 
states, is proposed by Han and Kim in the literature [5]. The 
algorithm is concentrated on the quantum-inspired evolutionary 
computing for a classical computer. In QGA, there is not a wide 
spectrum of parameters and operators; however, we encounter a 
fastest and an effective algorithm. Han and Kim in [5][6][7] have 
been presented that the QGA can simplify the search process and 
invoke much less computation time. Practical experience 
indicates that QGA can sometimes find good solutions to complex 
problems. In optimization theory an algorithm is said to converge 
on the global optimum, if the global optimum can be observed in 
a generated sequence of solutions, eventually. 

Markov chains [8][9][10] offer an appropriate model to analyze 
GAs and they have been used to prove their probabilistic 
convergence. In this paper, our proposed analysis is based on a 
Markov chain, by assuming the generation changes operation in a 
QGA is restricted to quantum gates. In this paper, we model a 
QGA as a finite Markov chain and then based on the concepts 
presented in [11][12], and prove the QGA always maintains the 
best solution in the population, converges with probability one to 
the global optimal solution. 

This paper is organized as follows: first, the necessary concepts 
about the novel evolutionary computing algorithm, QGA, and the 
requisite principles of finite Markov chain for convergence 
analysis are presented in section 2, and in section 3, mathematical 
prelude to QGA is presented and then the global convergence of 
QGA is analyzed. And finally, some conclusions are drawn in 
section 4. 

2 BASIC CONCEPTS 

2.1 Quantum Genetic Algorithm 
The description of the QGA provided here is largely based on [5], 
and comprehensive information and more details about it can be 
found in literatures [6][7]. 

Quantum Genetic Algorithm (QGA) is based on the quantum 
computing concepts including qubits and superposition of the two 
states. This algorithm uses a notable representation that is based 
on the concepts of qubits which are in quantum mechanics. A 
qubit may be in '1' state, '0' state, or in any superposition of the 
two. So, the state of a qubit can be presented as 
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0 1ψ α β= + , where 
2α  and 

2β  gives the probability 
that the qubit will be found in '0' state and '1' state, respectively 

and so, 
2 2

1α β+ = . So, the qubit is defined with a pair of 
numbers, ( , )α β  and consequently, a qubit individual is 
represented as a string of qubits. In (1), an individual of m  qubits 
is instantiated as 
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m
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where 2 2 1i iα β+ = , 1, 2, ,i m= L . The advantages of this 

representation are its ability to represent any linear superposition 
of states. This genetic algorithm with the representation in (1) has 
a better characteristic of population diversity than the other 
genetic algorithms. 

QGA is a probabilistic algorithm similar to other genetic 
algorithms and it also maintains a population of n  qubit 

individuals at generation t  in { }1 2( ) , , ,t t t
nQ t q q q= K , 

where t
jq  is a qubit individual defined as  
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where m  is the number of qubits, i.e., the string length of the 
qubit individual, and 1, 2, ,j n= L . 

Figure 1 shows the QGA procedure, and its overall structure is 
explained in the following: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Procedure of Quantum Genetic Algorithm 

A quantum gate, ( )U t , is defined as  

(3) ( ) ( ) ( )
( ) ( )

cos sin
sin cos

U t
θ θ
θ θ

−
=
⎡ ⎤
⎢ ⎥⎣ ⎦

, 

where θ  is a rotation angle. 

The quantum gates that are defined as (3),  are the rotation 
operators and their angels contribute to the convergence time; and 
also, these gates has a reversibility property and can be 
represented as unitary operators acting on qubit basis states. Like 
was said before, the quantum gate ( )iU θ  is employed to update 

a qubit individual t
jq   as a novel genetic operator. The pair of 

number, ( ),i iα β  of i-th qubit is updated as follows: 

(4) 
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The magnitude of iθ  has been effect on the speed of 
convergence, but if is too big, the solutions may diverge or 
converge prematurely to local optimum. In literature [6][7] is 
recommended that the magnitude of iθ  are ranging from 0.001π  
to 0.1π , although they depend on the problems. Additionally, 
sign of iθ  determines the direction of convergence. 

2.2 Finite Markov Chain 
A finite Markov chain describes a probabilistic trajectory over a 

finite state space. The probability ( )ijp t  is of transition 

probability from i  to j  at step t . If the transition probabilities 
are independent from t , the Markov chain is said to be 
homogenous. The transition probabilities of a homogenous finite 
Markov chain can be expressed in a transition matrix { }ijP p= ; 

For each entries, [ ]0,1ijp ∈ . 

Definition 1: A square matrix :A n n×  is said to be 

Nonnegative, if 0ija ≥  for all , 1, 2, ,i j n= L  

Positive, if 0ija >  for all , 1, 2, ,i j n= L  

Primitive, if there exists a k N∈  such that kA  is positive. 

Reducible, if matrix A  can be transformed into the form (with 
square matrix C  and T )  by applying the same permutations to 

rows and columns: 
0C

R T
⎡ ⎤
⎢ ⎥⎣ ⎦

 

Stochastic, if 
1

1
n

ij
j

a
=

=∑  for all 1, 2, ,i n= L  

Definition 2: Let ( )( ){ }max | 1,2, ,t kZ f t k nθ= = L  be a 

sequence of random variables representing the best fitness within 

begin 
      0←t  
      initialize ( )tQ  
      make ( )tPop  by observing ( )tQ  states 
      evaluate ( )tPop  
      store the best solution among ( )tPop  
      while (not termination-condition) do 
      begin 
            1+← tt  
            make ( )tPop  by observing ( )1−tQ  states 
            evaluate ( )tPop  
            update ( )tQ  using quantum gate  
            store the best solution among ( )tPop  and 

( )1B t −    

      end 
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a population presented by individual k  at step t . One of the 
classes of genetic algorithms converge to the global optimum, if 
and only if 

(5) { }*lim 1t tP Z f→∞ = = , 

where ( ){ }* max | mf f Bθ θ= ∈  is the global optimum of 

objective function; and mB  is contained all the solution 
possibilities in search space. 

Theorem 1: [10][11] P  is a primitive stochastic matrix. Then 
kP  converges as k →∞  to a positive stable stochastic 

matrix 1P p∞ ∞′= , where 0 0lim k
kp p P p P∞ ∞
→∞= ⋅ =  has 

nonzero entries and is unique regardless of initial distribution. 

Theorem 2: [10][11] 
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 is reducible stochastic 

matrix, where :C m m×  is primitive stochastic matrix and 
, 0R T ≠ . Then  
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is a stable stochastic matrix with 1P p∞ ∞′= , where 0p p P∞ ∞=  

is unique regardless of the initial distribution, and p∞  satisfies: 

0ip ∞ >  for 1 i m≤ ≤  and 0ip ∞ =  for m i n< ≤ . 

3 ANALYSIS OF THE QGA 
The QGA can be described as Markov chain: The state of its 
Markov model depends only on the genes of the individuals so 
that the state space is .m nS B= , where n  denotes the population 
size and m  is the number of genes (qubits) of the solution. State 
space, S , is defined based on the qubit individuals, ( )Pop t . 

Each element of this state space can be regarded as an integer 
number in representation. Contrary to us knows about the 
canonical genetic algorithms (GAs), it must be noted that in QGA, 
the intermediate transitions is not caused by the selection and the 
other genetic operators. Primary operator of the QGA is the 
quantum gate ( )U t . 

Lemma 1: Markov chain model of QGA is non-homogeneous, 
but it's possible to extract the homogeneous part from the main 
one. 
Proof: Suppose the quantum gate in (3); if its rotation angles are 
not zero, it could change the transition probability matrix in each 
generation. The transition probability at generation t  supposed to 
be 

(7) ( ) ( ) ( )1p t t p tξ= − , 

where ( )tξ  is the increasing rate of the transition probability 

( )p t , ( )0 1p t< ≤  and ( ) ( )
11 t

p t
ξ< <<  for 1t > . In [7], is 

considered that 

(8) ( )
1

0p
δξ = + , 

where ( )0 0pδ< << ,  so we will have  

(9) ( ) ( )( ) ( )1 11 0 0
t tP t p pξ
− −≈ − . 

Concerning (8), and with respect to ( )0 0pδ< << , we can see 

1ξ → , and subsequently lim 1k
k ξ→∞ ≈ .                       □ 

Now we have two parts, ξ  and ( )0p , which are  non-

homogeneous and homogeneous, respectively. Incidentally, ( )p t  

is positive. 
Theorem 3:  The transition matrix of QGA with transition 
probability ( )p t  is primitive. 

Proof: It follows by lemma 1 that ( )p t  is positive. Since every 

positive matrix is primitive, the proof is completed.        □ 
Theorem 4: The QGA with parameter ranges as in Theorem 3 is 
an ergodic Markov chain with, i.e., there exists an unique limit 
distribution for the states of the chain with nonzero probability to 
be in any state at any time regardless of initial distribution. 
Proof: This corollary is understood from Theorem 1 and 3.       □ 
Theorem 5: [10][11] In an ergodic Markov chain, the expected 
transition time between initial state i  and any other state j  is 

finite regardless of the state i  and j .                □ 

This paper introduces a strategy that with the preservation of the 
best individual, gives the global convergence proof. The 
population of Markov chain description is enlarged by an 
additional best solution. The best individual is preserved in left 
and top position of the new matrix and is not affected by the 
quantum gate and resultant transition probability. It is simply 
copied to the next generation with probability one. The cardinality 
of the state space grows from .2n m   to ( )1 .2 n m+ .  

The extended transition matrix for ( )0p+  can be expressed as 

follows: 

(10) ( )

( )
( )

( )

0
0

0

0

p
p

p

p

+

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

O

, 

The copy operation is presented by upgrade matrix Upgr  which 
upgrades an intermediate state containing an individual better 
than its last generation's best individual if the current generation 
includes the higher fitness individual. Let 

( )( ){ }arg max | 1,2, ,knewbest f i k nθ= = L  represents the 
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individual with highest fitness at state i  excluding the last 
generation's best individual. If fitness of the new best individual is 
better then the last generation's best individual, the state is being 
changed and 1ijupgr = , otherwise 1iiupgr = . In other words, a 

state either becomes upgraded or remains unaltered. Therefore, 
the upgrade matrix can be written as 

(11) 

1,1

2,1 2,2

2 ,1 2 ,2 2 ,2m m m m

upgr
upgr upgr

Upgr

upgr upgr upgr

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M M O

L

 

Size of the transition probability matrix and upgrade matrix, 
( )0p+  and Upgr  is . .2 2n m n m× , possessing the same structure. 

This paper assumes that the optimization problem only has one 
global point. Then 1,1upgr  is a unit matrix whereas all matrices 

,i iupgr  with 2i ≥  are unit matrices with some zero diagonal 

entries. 

Theorem 6: The QGA with parameter ranges as in Theorem 3 
that is maintaining the best solution over time converges to the 
global optimum. 
Proof: The final transition matrix for QGA, after applying two 
last steps in while loop in Fig. 1 ("update ( )Q t  using quantum 

gate" and "store the best solution among ( )Pop t "), can be 

written as 
( )

( )

( )

1 ,1

2 ,1 2 , 2

2 ,1 2 , 2 2 , 2

0
0 0

0 m m m m

u p g rp
u p g r u p g rp I

R T
u p g r u p g r u p g rp
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⎢ ⎥⎢ ⎥

⎡ ⎤⎢ ⎥⎢ ⎥ ⋅ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M OO

L

 

(12), 

where I  is a quadratic unit matrix describing the absorbing 
states, R  describes movement from transient to absorbing states 
and T  describes the movement among transient states. In fact, 
sub-matrix I  represents the transition probability for states 
containing a globally optimal state. Since this sub-matrix is a 
primitive stochastic matrix and 0R ≠ , Theorem guarantees that 
the probability of staying in any non-global optimal state 
converges to zero and the probability of being in any global 
optimal state converges to one, so that the limit of { }*

tP Z f=  

converges to one after t →∞ .Since (5) is satisfied and under 
lemma 1, the non-homogeneity part of the algorithm is limited, is 
drawn the global convergence property proof of the QGA.         □ 
So far, the convergence analysis of the QGA has been completed 
and QGA converges on the optimal solution. 

4 CONCOLUSION 
Canonical genetic algorithms apply special crossover, mutation 
and selection operators. These operators will add computation 
time and be prone to destroy the promising segments of the 
individuals. Whereas, Quantum Genetic Algorithm applies its 
special operator based on quantum computing concepts, namely 

quantum gate and additionally, a qubit individual include the 
superposition of states. 

Convergence can be also obtained with the qubit representation. 
Each of the qubits constituting an individual converges to a single 
state and the property of diversity disappears gradually. That 
means the qubit representation is able to possess the two 
characteristics of exploration and exploitation, simultaneously.  

In this paper, we formalized the QGA as a finite Markov chain 
and its convergence analysis has been studied based on the 
properties of Markov chain. 

Although non-homogeneity is the intimate property of this 
algorithm, but in this paper, we revealed that the QGA converge 
to the global optimum by extraction of the two incongruous parts 
(non-homogeneity and homogeneity) and surveying of those 
separately.  

In the last section, we investigated the global convergence of 
QGA satisfied its homogenous Markov chain and proved this 
algorithm is converged on the global optimum with probability 
one. 
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