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ABSTRACT 
In deep sub-micrometer regime the interconnect delay dominates 
over the gate delay. Several attempts have been made to estimate 
the interconnect delay accurately and efficiently. By interpreting 
the impulse response of a linear circuit as a Probability 
Distribution Function (PDF), Elmore first estimated the 
interconnect delay. Several other approaches like PRIMO, AWE, 
h-Gamma, WED, D2M etc. have been reported so far, which are 
shown to be more accurate delay estimation compared to Elmore 
delay metric. But they suffer from computational complexity 
when using in the total IC design processes. Our work presents a 
closed form formula for interconnect delay. Our metrics are 
derived from matching circuit moments to the Nakagami 
distribution. The delay metrics can be easily implemented for 
both step and ramp inputs by using a single look-up table. 
Experiments validate the effectiveness of the metrics for nets 
from a real industrial design. 
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1 INTRODUCTION 
As the process technology shrinks into nanometer regime, 
interconnect delay dominates over the gate delay; hence 
interconnect delay computation is becoming the crucial bottleneck 
for both performance and physical design optimization for high 
speed integrated circuits. The Elmore Delay [1] which is the first 
moment of the impulse response provides standard delay 
estimation for performance driven design applications. Elmore 
approximated the median of the impulse response (50% delay of 
the step response) by the mean of the impulse response by noting 
the similarity between non-negative impulse response and 

probability density functions. The Elmore delay metric has been 
incredibly popular because of it’s simplicity, closed-form and 
easy to estimate. The unacceptable loophole of the Elmore metric 
is that it is highly inaccurate as it doesn’t consider the resistive 
shielding effect of the interconnect.  

In order to estimate the delay accurately and efficiently several 
works have been reported so far. Rubenstein et al. [2] proposed a 
simple closed-form formula for computing the mean of the 
impulse response of RC interconnect trees. Alpert et al. [3] 
proposed the D2M metric which is a simple function of the first 
two circuit moments. The PRIMO [4], h-Gamma [5], and WED 
[6] metrics are based on matching the moments of the impulse 
response to a particular continuous probability distribution 
function (PDF). PRIMO and h- Gamma match moments of the 
impulse response to the Gamma distribution, while WED matches 
to the Weibull distribution. The approaches proposed in [4-6] 
require some type of table lookup operation. In order to improve 
the accuracy of the Elmore delay metric Asymptotic Waveform 
Evaluation (AWE) is being proposed [9] by matching the higher 
order moments of the impulse response. As the technology is 
shrinking towards the ultra deep sub micrometer (DSM) regime 
and transistor density in the chip is increasing, the length of the 
interconnect is getting longer. So efficient and accurate 
computation of the interconnect delay has become increasingly 
critical.  

We present a closed form delay metrics based on the Nakagami 
distribution. Unlike [4] [5] [6], matching to the Nakagami 
distribution produces closed form formulae and no look-up table 
is required to compute the delay.  

We make the following contributions: 

A simple delay metric NkD (Nakagami delay) is derived using the 
first two moments of the impulse response. The NkD metrics can 
be extended to ramp inputs using the PERI method [7]. The 
effectiveness of the Nakagami metrics is confirmed on nets from 
an industrial design. 

2 THEORY 
Assume that h(t) is the impulse response of a node voltage in an 
RC circuit. The circuit moments of the impulse response are: 
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Where k=1, 2, 3... 

and km  is the kth circuit moment of the impulse response. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.  

© Copyright 2008 Research Publications, Chikhli, India 



International Journal Of Computer Science And Applications Vol. 1, No. 2, August 2008  

ISSN 0974-1003   

Published by Research Publications, Chikhli, India 115 

The circuit moments can be computed directly as functions of the 
RC’s in time linear in the size of the circuit, e.g., via path tracing 
algorithm. From [2] the impulse response h(t) satisfies the 
following conditions: 
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Consequently, the impulse response is a probability distribution 
function (PDF), though there is no known underlying statistical 
distribution describing it. 

The mean of the impulse response is: 
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Elmore [4] showed that µ = -m1 and therefore approximated the 
median (the desired delay) by the mean of the impulse response. 
We let ED = µ = -m1, denote the Elmore delay. The kth central 
moment is given by: 
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The variance ( 2σ ) of the impulse response can be expressed in 
terms of the central moments and also the circuit moments [10]: 
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The key idea behind our delay metrics is to match the mean and 
variance of the impulse response to those of the Nakagami 
distribution. 

3 PROPOSED DELAY METRIC 
The Nakagami distribution is a two-parameter continuous 
distribution. The Nakagami distribution is well suited to match 
the impulse response since both are unimodal and have 
nonnegative skewness. The Nakagami PDF is given by: 
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Where w>0 and µ > 0 are the scale and shape parameters, 
respectively. Its cumulative density function (CDF) is given by: 
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The expected value (or mean) and the variances are, respectively, 
given by: 
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One can match two common properties of the Nakagami 
distribution and the circuit's impulse response. Recall that the 
mean and variance of the impulse response are µ = -m1 and σ2= 
2m2 – m1

2 , respectively. Using Equation (8) and (9) to match the 
mean and variance yields, 
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Solving (10) and (11) for ‘w’ yields,  
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Note that the median of the Nakagami Distribution is given 

by w . One can verify this by setting ),,( wxD μ = 0.5 in 
Equation (7) and solving for x. Thus, when matching the impulse 
response the median becomes our 50% delay metric: 
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Thus, the delay function is a simple function of the first two 
circuit moments. This is our proposed closed form delay model. 

4 EXPERIMENTS RESULTS 
In order to verify of the effectiveness of our model we have 
extracted 432 routed nets containing 2244 sinks from an industrial 
ASIC part in 0.18 micrometer technology. The nets were chosen 
by filtering process that required the maximum sink delay to be at 
least 10ps and the ratio of the closest sink to the furthest sink in 
the net to be less than 0.25. So, each net has at least one near-end 
sink. Now for each sink we compute delay using SPICE and 
measure the relative error of the appropriate metric to the SPICE 
result. For each RC network source we put a driver, where the 
driver voltage is a voltage source followed by a resister. Here we 
have compared Nakagami Distribution (NkD) with Kahng-Muddu 
Model (KM) [8] and Elmore Delay (ED) [1]. 

Table 1. Delay comparison for Nakagami delay metric 
Driver Resistance=0Ω 

 Average % Relative 
error 

% Standard Deviation 

Sinks NkD ED KM NkD ED KM 

Near 56.7 335.9 141.8 42.34 207.98 103.63 

Mid 18.4 87.33 19.98 12.98 34.09 15.37 
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Far 1.29 33.64 1.31 1.19 3.58 1.65 

Total 18.13 113.7 37.18 31.13 148.6 74.76 

Driver Resistance = 100Ω 

Sinks NkD ED KM NkD ED KM 

Near 109.5 521.1 246.7 67.89 307.87 164.76 

Mid 18.2 81.23 18.89 11.34 28.03 14.49 

Far 1.49 36.56 1.65 1.13 3.79 1.29 

Total 26.76 143.2 52.6 49.67 229.76 117.87 

Driver Resistance = 200Ω 

Sinks NkD ED KM NkD ED KM 

Near 123.76 457.9 228.4 62.98 228.48 222.12 

Mid 14.89 74.53 15.23 8.47 23.12 14.11 

Far 1.65 34.67 1.69 0.87 3.67 1.47 

Total 27.67 126.6 45.43 52.34 189.1 45.19 

5 CONCLUSION 
We have proposed NkD, a closed form delay metric for RC trees 
that is a simple function of two moments of the impulse response, 
for performance optimization. Our metric has the Elmore delay as 
a theoretical upper bound, but with significantly less error. NkD is 
more accurate than KM and is indeed remarkably accurate at the 
near end. NkD has the advantage that its Elmore-like formula may 
make it more amenable to optimization.  
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