
International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

172

A Novel Disk Scheduling Approach for Real-time Database
Systems

G.R.Bamnote
PRM Institute of Technology &
Research, Badnera-Amravati,

Maharashtra , India
+917212510215

grbamnote@rediffmail.com

Dr.M.S.Ali
PRM Institute of Technology &
Research, Badnera-Amravati,

Maharashtra , India
+917212578385

softalis@hotmail.com

S.Y.Amdani
Babasaheb Naik College of

Engineering, Pusad, Dist Yeotmal,
Maharashtra , India

+919764996786

salimamdani@yahoo.com

ABSTRACT
It has been identified that for the improvement of the performance
of Real-time Database Systems all the resources should be
utilized efficiently and disk is an important resource which should
be concentrated. In this paper a novel disk scheduling algorithm
for real-time database system is proposed. A simulator is
developed which simulated the algorithms EDF, FD-SCAN, P-
SCAN, SSEDO, SSEDV and the proposed algorithm and their
performance is compared for Disk scheduling in Real-time
Database Systems. After evaluation it was found that our
proposed approach gives better performance than the existing
algorithms.

Categories and Subject Descriptors
 H.2.4 [Database Management]: Systems, Real-time, I.6.6
[Simulation Output Analysis]

General Terms

Algorithms, Performance, Experimentation

Keywords
Real-Time Database Systems, Disk Scheduling Algorithms.

1 INTRODUCTION
Database Management Systems are said to be complex, mission-
critical software systems. Traditionally application-dependent
designs were used in Real-Time Systems for data management
but as the applications become more complex and amount of data
increases, the code, which deals with data management, become
very difficult to develop and maintain. Real-time Database
Systems (RTDBS) have immerged as an alternative to manage the
data with a structured and systematic approach [1,2]. In RTDBS
the transactions are associated with explicit timing constraints,
such as deadlines and the maximum temporal distance
requirements between the accessed data objects. The correctness
of a RTDBS depends upon the logical results and also upon the
time at which the results are produced. Transactions in the system

must be scheduled in such a way that they can be completed
before their corresponding deadlines expire as well as satisfy
database consistency constraints [3,4]. RTDBS have different
performance goals, correctness criteria, and assumptions about the
applications. The conventional database system’s main objective
is to provide fast response time, whereas a RTDBS may be
evaluated based on how often transactions miss their deadlines,
the average “tardiness" of late transactions, the cost incurred in
transactions missing their deadlines, data external consistency and
data temporal consistency. Data in a real-time system is managed
on individual basis by every task within the system. Therefore, in
various application domains, data can no longer be treated and
managed on individual basis; rather it is becoming a vital resource
requiring an efficient data management mechanism. [5,6]. It has
been identified that for the improvement of the performance of
RTDBS all the resources should be utilized efficiently. There are
three types of major physical resources: the processors, the disks
and main memory buffers, that should be managed effectively and
efficiently even at the database level with support from
underlying operating systems [7]. The main criteria in assessing
the success of any scheduling policy is the success ratio i.e. the
number of transactions completed successfully before their
deadline. In this paper we have discussed the disk scheduling
algorithms. We have simulated some of the algorithms and
compared them. The organization of this paper is as follows:
Section 2 gives an overview of the disk-scheduling problem. In
section 3 Disk Scheduling Algorithms are discussed. In section 4,
the proposed approach is described. In section 5 the experimental
results and performance evaluation is presented. Finally section 7
concludes with a summary.

2 DISK SCHEDULING PROBLEM
In a disk-based database system, disk I/O occupies a major
portion of transaction execution time. As with CPU scheduling,
disk-scheduling algorithms that take into account timing
constraints can significantly improve the real-time performance.
CPU scheduling algorithms, like Earliest Deadline First and
Highest Priority First, are really suitable but have to be modified
before they can be applied to I/O scheduling. The main reason is
that disk seeks time, which accounts for a very significant fraction
of disk access latency, depends on the disk head movement. The
order in which I/O requests are serviced, therefore, has a great
impact on the response time and throughput of the I/O subsystem
[15,17].

To service a disk request, several operations take place. First, the
disk head must be moved to the appropriate cylinder (seek time).
Then, the portion of the disk on which the disk page is stored

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

173

must be rotated until it is immediately under the disk head
(latency time). Then, the disk page must be made to spin by the
disk head (transmission time). Disk scheduling involves a careful
examination of the pending disk requests to determine the most
efficient way to service the disk requests. The disk scheduling
problem involves reordering the disk requests in the disk queue so
that the disk requests will be serviced with the minimum
mechanical motion by employing seek optimization and latency
optimization [8].

For a given set of jobs, the general scheduling problem asks for an
order according to which the jobs are to be executed such that
various constraints are satisfied. Typically, a job is characterized
by its execution time, ready time, deadline, and resource
requirement. The execution of the job may or may not be
interrupted (preemptive or non-preemptive scheduling). Over the
set of jobs, there is a precedence relation which constraints the
order of execution. Specially, the execution of a job cannot begin
until the execution of all its predecessors is completed. The
following goal should be considered in scheduling a real-time
system [9].

� Meeting the timing constraints of the system.

� Preventing simultaneous access to shared resources and
devices.

� Attaining a high degree of utilization while satisfying the
timing constraints of the system.

� Reducing the communication cost in real-time systems.
Basically, the scheduling problem is to determine a schedule for
the execution of the jobs so that they all are completed before the
overall deadline.

3 DISK SCHEDULING ALGORITHMS

3.1 Classical Scheduling Algorithms
The following classical scheduling algorithms are well accepted
[10].

FCFS : This is the simplest strategy in which each request is
served in first-come-first-serve basis.

SCAN : This is also known as the elevator algorithm in which the
arm moves in one direction and serves all the request in that
direction until there are no further request in that direction.

C-SCAN : The circular SCAN algorithm works in the same way
as SCAN except that it always scans in one direction. After
serving the last request in the scan direction, the arm return to the
start position.

SSTF : The SSTF, for shortest seek time first, algorithm simply
selects the request closest to the current arm position for service.

A common feature of all these classical scheduling algorithms is
that none of them takes the time constraint of request into
account. This results in poor performance of classical algorithms
in real-time systems.

3.2 Real-Time Disk Scheduling Algorithms
The real-time disk scheduling algorithms like Earliest Deadline
First (EDF), Priority Scan (P-Scan), Feasible Deadline Scan (FD-

Scan), Shortest Seek and Earliest Deadline by Ordering (SSEDO)
and Shortest Seek and Earliest Deadline by Value (SSEDV) are
discussed here.

EDF Algorithm : The Earliest Deadline First (EDF) algorithm is
an analog of FCFS. Requests are ordered according to deadline
and the request with the earliest deadline is serviced first.
Assigning priorities to transactions an Earliest Deadline policy
minimizes the number of late transactions in systems operating
under low or moderate levels of resource and data contention.
This is due to the highest priority given to the transactions that
have the least remaining time in which to complete. However, the
performance of Earliest Deadline steeply degrades in an
overloaded system [11]. This is because, under heavy loading,
transactions gain high priority only when they are close to their
deadlines. Gaining high priority at this late stage may not leave
sufficient time for transactions to complete before their deadlines.
Under heavy loads, then, a fundamental weakness of the Earliest
Deadline priority policy is that it assigns the highest priority to
transactions that are close to missing their deadlines, thus
delaying other transactions that might still be able to meet their
deadlines [12,16].

P-SCAN Algorithm: In Priority Scan (P-Scan) all request in the
I/O queue are divided into multiple priority levels. The Scan
algorithm is used within each level, which means that the disk
serves any requests that is passes in the current served priority
level until there are no more requests in that direction. On the
completion of each disk service, the scheduler checks to see
whether a disk request of a higher priority is waiting for service
[13]. If found the scheduler switches to that higher level. In this
case, the request with shortest seek distance from the current arm
position is used to determine the scan direction. All the I/O
requests are mapped into three priority levels according to their
deadline information. [10].

FD-SCAN Algorithm: In Feasible Deadline-Scan (FD-SCAN),
the track location of the request with earliest feasible deadline is
used to determine the scan direction. A deadline is feasible if we
estimate that it can be met. Each time that a scheduling decision is
made, the read requests are examined to determine which have
feasible deadlines given the current head position. The request
with the earliest feasible deadline is the target and determines the
scanning direction. The head scans toward the target servicing
read requests along the way. These requests either have deadlines
later than the target request or have unfeasible deadlines, ones that
cannot be met. If there is no read request with a feasible deadline,
then FD-SCAN simply services the closest read request. Since all
request deadlines have been missed, the order of service is no
longer important for meeting deadlines [13].

SSEDO Algorithm: The idea behind Shortest Seek and
Earliest Deadline by Ordering (SSEDO) algorithm is that requests
with smaller deadlines are given higher priorities so that they can
receive service earlier. This can be accomplished by assigning
smaller values to their weights. On the other hand, when a request
with large deadline is “very” close to the current arm position
(which means less service time), it should get higher priority. This
is especially true when a request is to access the cylinder where
the arm is currently positioned. Since there is no seek time in this
case and it is assumed the seek time dominates the service time ,

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

174

the service time can be ignored. Therefore these requests should
be given the highest priority. [10].

SSEDV Algorithm: The Shortest Seek and Earliest Deadline
by Value (SSEDV) use the deadline value information for
decision-making. In the SSEDO algorithm the scheduler uses
only the ordering information of request deadlines and does not
use the differences between deadlines of successive requests in
the window. A common characteristic of SSEDV and SSEDO
algorithm is that both consider time constraints and disk service
times. Which part plays the greater role in decision-making can be
adjusted by tuning the scheduling parameters depending on the
algorithm [10][14].

4 THE PROPOSED APPROACH
In our proposed approach all the request in the I/O queue are
divided into multiple priority levels. Transactions are assigned the
priorities depending on the deadlines. All the I/O requests are
mapped into three priority levels according to their deadline
information. Specially, transactions relative deadlines are
uniformly distributed between LOW_DL and UP_DL, where
LOW_DL and UP_DL are lower and upper bounds for transaction
deadline settings. If a transactions relative deadline is greater than
(LOW_DL + UP_DL)/2, then it is assigned the lowest priority. If
the relative deadline is less than (LOW_DL + UP_DL)/4, then the
transaction receives the highest priority. Otherwise the transaction
is assigned a middle priority.

The algorithm selects the transaction with minimum deadline
from the high priority level and also servers the transactions that
are close to the current head position and then serve the
transaction with next minimum deadline. Thus the requests with
smaller deadlines can receive service earlier and also when a
request with large deadline is very close to the current arm
position are also served which will reduce the arm moment. Same
procedure is repeated for all the transactions in the three priority
levels. The important steps in scheduling algorithm are :.

� Construct three queues to store the transaction with
minimum, middle or maximum priorities.

� Store the transaction in the corresponding queue.
� Set start_time, end_time, seek_time, current_head_position,
total_transaction_time, turn_around_time for the transactions
with minimum deadline in the three queues.

� Find transactions with seek time within threshold
� Check transaction is miss or hit in all the queues.

5 THE EXPERIMENTAL RESULTS
We have investigated and implemented various real-time disk
scheduling algorithms namely EDF, P-SCAN, FD-SCAN,
SSEDO SSEDV and our proposed novel algorithm with non-
preemptive policy for soft deadline transaction. In these
algorithms, preferential treatment is given to transactions, which
are very critical, and with stringent timing constraints. Hence
deadline is calculated on the basis of transaction execution time
and slack time. We have also compared the performance of these
algorithms under same workload condition. For the
implementation of above-mentioned algorithms first we have
formulated the disk-scheduling problem for real-time database
systems and then implemented the mathematical model for all the
algorithms. To get the evaluation parameters values, we have

simulated the mathematical model for number of times. The
experimental results show that the performance of SSEDO and
SSEDV is better than EDF, FD-SCAN and P-SCAN in heavy
workload. When the proposed algorithm was implemented it gave
still better results as compared to SSEDO and SSEDV.

5.1 Performance of Various Disk
Scheduling Algorithms

We explored the transaction loss probability of all the five
algorithms stated in section 3 plus the proposed algorithm
explained in section 4 under different workloads. For random
arrival fashion of the transactions, with arrival rate 0.15, number
of transactions 200 and disk size in blocks 100, the comparison
given here is based on the properties like total transactions,
successful transaction, time spend on all transactions, time spend
on successful transaction, utilization of system and success ratio.

Table 1. Performance of Algorithms for random arrival

Properties EDF FD-
SCAN P-SCAN SSEDO SSEDV Proposed

Total
Transaction 200 200 200 200 200 200

Successful
Transaction 70 93 98 132 151 154

Time spent On
All
Transactions

4147 1590 1598 1079 1563 1580

Time spent On
Successful
Transactions

1149 779 815 715 1252 1220

Utilization Of
System 0.28 0.49 0.51 0.66 0.80 0.77

Success Ratio 0.35 0.47 0.49 0.66 0.76 0.77

As shown in table 1, performance of SSEDV is better than
SSEDO, since the SSEDV uses more timing information than the
SSEDO for decision-making. P-SCAN and FD-SCAN perform
essentially at the same level. The EDF algorithm is good when the
system is lightly loaded, but it degenerates as soon as load
increases, as shown in figure 2. Our proposed approach shows
still better performance.

In figure 1 the graph shows the performance of all the six
algorithms in terms of utilization of systems and success ratio.
Figure 2 is the result of nine runs with different transactions load
ranging from 10 to 250 transactions with random arrival pattern.
As discussed earlier it is clear that the performance of EDF
degrades as the load increases and performance of our proposed
algorithm is better when the load is increased.

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

175

Performance for Random Arrival

0

0.5

1

EDF FD-SCAN P-SCAN SSEDO SSEDV Proposed

Algorithms

Utilization Of System Success Ratio

Figure 1 Combined Comparison for Random Arrival

Performance at random arrival for different load

0.00

0.50

1.00

10 20 30 40 50 100 150 200 250

No of Transactions

Su
cc

es
s

R
at

io

EDF FD-SCAN P-SCAN
SSEDO SSEDV Proposed

Figure 2 Performance at random arrival for different load

6 CONCLUSION
We investigated various real-time disk-scheduling algorithms
namely EDF, P-SCAN, FD-SCAN, SSEDO and SSEDV. In EDF
transactions are ordered according to deadline and the request
with earliest deadline is serviced first. Priority-Scan divides all
the request in the I/O queue the scan algorithm then serves any
request that is passes in the current served priority level until
there are no more requests in that direction. In FD-SCAN, the
track location of the request with earliest feasible deadline is used
to determine the scan direction. In the SSEDO algorithm, the
scheduler uses the ordering information of request deadlines,
whereas SSEDV use the difference between deadlines of
successive requests in the window.

The results of the comparison shows that, performance of SSEDV
is better than SSEDO, since the SSEDV uses more timing

information than the SSEDO for decision making. P-SCAN and
FD-SCAN perform essentially at the same level. The EDF
algorithm is good when the system is lightly loaded, but it
degrades as load increases. When we implemented our proposed
algorithm, which divides the transactions into three classes, then
schedules the transactions considering the priority and the head
position, it gave better results. As different algorithms show
different results at various transaction load the further
modification to this disk scheduling problem in Real-time
Database System can be monitoring the I/O load dynamically,
focusing on using analyses of disk accesses to determine the best
disk scheduling algorithm for the current workload, and switching
algorithms as necessary to improve performance.

7 ACKNOWLEDGMENTS
The authors would like to thank the Principal, PRMITR Badnera-
Amravati (India) for encouragement and support.

8 REFERENCES
[1] Krithi Ramamritham, “Real-Time Databases,” Journal of

Distributed and Parallel Databases, Vol. 1, No. 2, 1993,
pp.199-226., Kluwer Academic Publishers Hingham, MA,
USA, April 1993.

[2] Barbosa Raul, “An Essay on Real-Time Databases”,
Department of Computer Science and Engineering, Chalmers
University of Technology, Goteborg, Sweden, 2007.

[3] Lund K, Goebel V., “Adaptive Disk Scheduling In A
Multimedia DBMS”, Proceedings of the eleventh ACM
international conference on Multimedia, Berkeley, CA, USA
, 65 – 74, 2003.

[4] Ben Kao and Reynold Cheng,” Disk I/O Scheduling. In
Real-Time Database Systems: Architecture and Issues”,
edited by Kam-Yiu Lam and Tei-Wei Kuo, Kluwer
Academic Publishers, pp. 97-107, Boston, December 2001.

[5] Ben Kao and Hector Garcia-Molina., ”An Overview of Real-
Time Database Systems”, Proceedings of NATO Advanced
Study Institute on Real-Time Computing. St. Maarten,
Netherlands Antilles, Oct 1992.

[6] Aldarmi, S.,”Real-Time Database Systems: Concepts and
Design”, Department of Computer Science, The University
of York., April 1998.

[7] Ackovska N, Bozinovski S, Jovancevski G, “Real-Time
Systems- Biologically Inspired Future”, Journal of
Computers, Vol 3, No.3,No 3, pp 56-63, March 2008.

[8] Tsai, C., et al., “An Efficient Real-Time Disk-Scheduling
Framework With Adaptive Quality Guarantee”, IEEE
Transactions On Computers, Vol. 57, pp 634-647.No.5, May
2008.

[9] Z.Dimitrijevic, R.Rangaswami, and E. Chang.,”Design,
Analysis and Implementation of Virtual IO”, International
Multimedia Conference Proceedings of the Tenth ACM
International Conference on Multimedia, pp 231-234, Juan-
les-Pins, France, September 2002.

[10] Shenze Chen, John A. Stankovic, James Kurose and Don
Towsley “Performance Evaluation of Two New Disk

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

176

Scheduling Algorithms”, The Journal of Real-Time Systems,
Vol 3, number 3, 307-336,1991.

[11] Krithi Ramamritham, Sang Hyuk Son, Lisa Cingiser
DiPippo, “Real-Time Databases and Data Services” Journal
of Real-Time Systems 28(2-3) pp:179-215, 2004.

[12] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time
Transactions: A Performance Evaluation”, Proceedings of
the 14th International Conference on Very Large Data Bases,
Los Angeles, California, pp: 1 – 12, March 1988.

[13] Robert K. Abbott, Hector Garcia-Molina,” Scheduling I/O
Requests with Deadlines: a Performance Evaluation” Real-
Time Systems Symposium, Proceedings, 11th Volume ,
Issue , 5-7 Dec 1990 pp: 113 -124 ,1990

[14] Jayant R. Haritsa, Michael J. Carey, and Miron Livny
“Value-Based Scheduling in Real-Time Database. Systems”,
The VLDB Journal — The International Journal on Very

Large Data Bases, Volume 2, Issue 2 , pp: 117 – 152, April
1993.

[15] Reuther, L.,Pohlack, M., Rotational-Position-Aware Real-
Time Disk Scheduling Using A Dynamic Active Subset
(DAS), Proceedings of the 24th IEEE International Real-
Time Systems Symposium, Cancun, Mexico, pp: 374- 385,
3-5 December 2003.

[16] Shih, S.; Young-Kuk Kim; Son, S.H., “ Performance
Evaluation Of A Firm Real-Time Database System”,
Proceedings of Second International Workshop on Real-
Time Computing Systems and Applications, pp:116 – 124,
25-27 Oct. 1995 .

[17] Walter A. Burkhard, John D. Palmer, “Rotational Position
Optimization (RPO) Disk Scheduling”, First Conference on
File and Storage Technologies, Monterey, California,
January 28-29,2002.

