
International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

177

LAYER X: A Novel Distributed Working System for VCS
Ronak Kumar Samantray

Dept. of Computer Science and Engineering
College of Engineering and Technology

Techno Campus, Bhubaneswar
(+91)-9437272864

ronak.rks@gmail.com

Sonal Das
Dept. of Computer Science and Engineering

College of Engineering and Technology
Techno Campus, Bhubaneswar

(+91)-9861062998

sonaldas.sd@gmail.com
ABSTRACT
In this paper we propose a novel layer (called 'LAYER X') which
can be deployed at a Version Control Server to enable client-
independent authentication system. This helps us to achieve a
distributed working system for VCS. We have designed the
protocol in accordance to the CVS server (Concurrent Version
System), which is one of the most widely used server for version
control. Our protocol has been designed such that, both pserver
and the challenge based authentication system become client-
independent for a particular session period.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Version Control - Authentication,
K.6.5 [Management of Computing and Information Systems]:
Security and Protection - Authentication

General Terms
Algorithms, Design, Experimentation, Security.

Keywords
Version Control System, CVS, pserver authentication, challenge
based authentication system, Client-independent authentication

1 INTRODUCTION
Version Control System is a centralized system for sharing
information. At its core is a repository, which is a central store of
data. The repository stores information in the form of a file
system tree—a typical hierarchy of files and directories. Any
number of clients connects to the repository, and then read or
writes to these files. By writing data, a client makes the
information available to others; by reading data, the client
receives information from others. The core mission of a version
control system is to enable collaborative editing and sharing of
data. What makes any VCS repository special is that it remembers
every change ever written to it: every change to every file, and
even changes to the directory tree itself, such as the addition,
deletion, and rearrangement of files and directories [1]. In this
paper we propose the protocols in accordance to the CVS server
which is one of the most widely used version control servers.
CVS is one program, but it can perform many different actions:

updating, committing, branching, diffing, etc [3].

In a Version Control System each time a user logs in, the contents
of a module (in accordance with the access rights of the user) are
copied into the client. After first authentication the user need not
provide any login information (unless his session or password
expires) for rest of the activities (like commit, update or diff etc)

Figure 1. Client-Dependent Authentication System

from the same client. Imagine a situation (see Figure 1) when the
user check-outs the module from his office PC (Client-1) and
wants to commit or check-out from his home PC (Client-2). In
this case the user will have to give the login information again so
as to authenticate from the new client (Client-2).

In this paper, we propose a protocol for a novel layer (Layer X)
which can be deployed at the version control server to make the
authentication client-independent.

2 LAYER X: PROTOCOL(S)
The two primary types of authentication systems for any server
are the password-based and challenge-based authentication
system. In case of CVS (which one of the most widely used server
for version control) the password-based authentication system is
known as the pserver method. This method is adopted when rsh is
not feasible (for example when the server is behind a firewall).

In the next sub-section we describe the Layer X protocol for
password-based authentication system (pserver) method in CVS
servers. The pserver method allows users to connect to the
repository with a username and password that are stored on the
repository server. The main advantage of pserver is that it permits
anonymous, passwordless, read-only access. The main
disadvantages of pserver mode are that it uses a trivial encoding
scheme for passwords and the data stream is not encrypted.
pserver mode is included in CVS automatically, but it requires a
password file that needs to be configured [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli India

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

178

2.1 Protocol for password-based system
On a CVS server the pserver method uses the 2041 port. The user
logs in by the following command [3].

$cvs -d:pserver:bach@faun:/usr/local/cvsroot login

CVS password:

After user enters the password, CVS verifies it with the server. If
the verification succeeds, then that combination of user name,
host, repository, and password is permanently recorded, so future
transactions with that repository will not require any login from
the user. The records are stored, by default, in the file
‘$HOME/.cvspass’. The format of that file is human-readable,
and to a degree human-editable, but note that the passwords are
not stored in clear text--they are trivially encoded to protect them
from "innocent" compromise (i.e. inadvertent viewing by a
system administrator or other non-malicious person).

When the user shifts from Client-1 to Client-2 (see Figure 1),
these details stored in '$HOME/.cvspass' are absent in the new
client. User will have to login from Client-2 before any
transactions takes place. So to enable distributed working system
in pserver method, we propose the following protocol.

Step 1: Copy .cvspass file into the home directory of Client-2.

Step 2: Copy the working directory (recursively) so that all the
 subdirectories and the hidden files are also properly
 transfered into Client-2.

Step 3: For each sub-directory under the working directory repeat
 from Step 4 to Step 5

Step 4: Open CVS/Root file. Edit path of root repository
according to Client-2.

Step 5: Open CVS/Repository file. Edit path of the working
directory of the project in accordance with Client-2.

Step 6: Configure the CVS_RSH variable of the Client-2.

 client2$ CVS_RSH=rsh; export CVS_RSH

 (NOTE: In Step 1 we copy the password file into the new client.
But plain copy of the file will create problem as the password is
not stored in plain-text. So, proper steps must be taken while
copying this file into Client-2). In the next sub-section we
describe our Layer X protocol for challenge-based authentication
system.

2.2 Protocol for challenge-based system
In this kind of authentication system the user generates a key-pair.
User stores the public key in the server and preserves the private
key in the client from which he wants to work from. The detailed
working of the challenge-based authentication system (which
includes generation of the key-pair, installation of the public key
on the server etc) can be found in [4][5].

In case of CVS, ext is the most commonly used access method,
and it is usually used with SSH [3]. ext stands for external, which

refers to an external (to CVS) rsh or remote shell program. This
method uses a remote shell program to connect the sandbox client
computer to the repository server computer. The server method is
almost the same as the ext method.

To enable a distributed working for such a system we propose the
following protocol.

LAYER X
Step 1 : For each incoming request repeat from Step 2 to Step 13

Step 2 : Check the database if any such entry with U=user
 matches with that of the incoming packet from
 user@client.

Step 3 : If match found then

Step 4 : Change the user@client in the incoming packet to
 user@org_client corresponding to the value of T in
 the entry and set Tt = user@client.

Step 5 : Forward the request to the CVS server and wait for
 the response from the server.

Step 6 : On receipt of the response from the server change the
 target tag in the outgoing packet to user@client
 from user@org_client.

Step 7 : Else If match not found & login request is received then

Step 8 : Forward the request to the CVS server and wait for
 the response.

Step 9 : On receipt of the response from the server check if
 the login was successful

Step 10 : If successful then

Step 11 : Create an entry as T=user@org_client, Tt=null and
U=user as in the outgoing packet.

Step 12 : Set the timeout period for the entry as �.

Step 13 : Else Forward the packet to the target system.

Step 14 : Check the database for any entry if the time of residence
 of the entry has exceeded the time-out limit �. If any
 such entry is found then remove the entry.

(NOTE: When the user shifts from Client-1 to Client-2, he must
also carry his private key into the new client. Since the private
key of the user is still required by Client-2 so no adversary can
take any unnecessary advantage of the distributed working
system.)

Symbols Used in the above Protocol
T : This entry in the database corresponds to the original host
name of the user through which he had successfully logged in.

Tt : This entry in the database corresponds to the new client from
which the user tries to log into the server (within the given time
period). This client may not be same as initial client from where
user had authenticated himself.

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

179

U : This entry in the database stores the user name of the current
session of the user. We know that on a public network
(for a particular server) each user is provided with a unique name.
So this can field serves as the primary key in the database.

� : A suitable time period within which distributed working is
allowed for any user. This value is set by the server administrator
according to the convenience and security rules. If this is set to
zero, then Layer X becomes transparent and it corresponds to the
present client-dependent system.

database / knowledge base: The database used for storing the data
for Layer X. This may be a plain text file or any database like
MySQL (for increased efficiency).

3 LAYER X: ARCHITECTURE
The Layer X lies as an intermediate layer between the CVS server
and the client systems (see figure 2). It receives all the incoming
requests from the clients and applies an appropriate
transformation to these incoming packets on basis of the
authentication system being used between the client and the
server. The reply packet from the server is again transformed by
Layer X in accordance with the user session.

 Figure 2. Implementation Architecture of Layer X

The complexity of transformation being carried out is one of the
primary factors in the effective response time of the server. So we
set the � value such that the burden on Layer X even in peak
periods would be less. The issues related to the security and
scalability of Layer X has been dealt with in the next section.

4 IMPLEMENTATION ISSUES
There might be some common questions which might be raised
regarding the Layer X that we have proposed. Some issues have
been dealt with in the following sections.

4.1 Purpose of a time-out period
We have set a time out value as � as the time out value for a user.
This value signifies the amount of time the user can have the
flexibility of distributed working. By the term distributed working

we mean that, if user had logged in from a a system say Client-1
then within a specified time period he can directly login (without
giving any passwords) from any other client. The only constraint
is that the new client should have the private key of the user for
file management operations. So the user would have to manually
transfer his private key from Client-1 to the new client.

Now one question might arise in your mind that 'Why did we set a
time out period, why cannot we have a permanent distributed
working for a user?’ Well imagine a situation when users had a
permanent record in the knowledge base of Layer X to enable
permanent distributed working facility. But this would in turn
increase the response time of the server, because as the number of
entries in the knowledge base would increase the Layer X would
take more time in taking decisions and delay the server response
time. It would also be an unnecessary overhead on the server.

4.2 Security of a user's session
The most probable question that can be raised is about the
security of Layer X. Layer X might seem very vulnerable in the
first instance because 'it provides no-password login from any
client for a user within a specific time period'. But if we look into
the architecture of Layer X (as explained in section 3.) we would
observe that during every transaction between the server and
client the private key of the user is always required to sign the
packets sent by the user. And since this key is private with respect
to any user we can be sure that no client can claim to be any user
without any proof/certificate!! (Base of Layer X still remains the
challenge-based system. Layer X can be thought as just a plug-in
for the challenge system). Thus our Layer X is also secure.

4.3 Denial-of-service attack
The Layer X we have proposed has a loophole (though its not a
major flaw in the design). We do not monitor the frequency of
incoming requests from a particular client. An adversary might
send huge number of requests to the CVS server just to increase
the load on the server. This would lead to denial of service to
some legitimate users also. But this is not a major issue. A trivial
solution to this problem can be to set another time period for any
client, such that it wont be able to send multiple requests within
that specific period. A more efficient method can be designed by
setting proper firewall filters.

5 FUTURE SCOPE

5.1 Dynamic Session Periods
In our Layer X we have used � to store the time-out value for a
session. This value is unique to all the users. But we can make it
more intelligent by making the time-out value dependent on the
access rights level of a user. For example an administrator will
have longer session than a normal user. This would give more
flexibility for the administrator.

Another approach to make the session periods dynamic is by
monitoring the load at the server. i.e. on basis of the load at server
we can adjust the session periods. For example during peak load

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

180

period the period value should be low. Because Layer X would
have a large number of entries to handle. This would further
increase the time response time of the server. To achieve this goal
of we need to access the actual test our Layer X on a server like
sourceforge.net or freshmeat.net.

5.2 Web based CVS access
Since Layer X makes the server access client independent so we
can en-corporate web based access to CVS servers. Today we
have only command line access to these servers because of the
speed and handling of file transfer. So if an efficient file transfer
system for HTTP can be developed then along with Layer X we
can have a robust and flexible system.

5.3 Single-Sign-On
A Single-Sign-On protocol can be designed for all the CVS
servers using any of the lightweight libraries like YADIS etc. This
would allow the users to access all the CVS servers (like
sourceforge.net, freshmeat.net etc) using a single login id. But to
design the respective governing companies must agree upon a
common license design for the projects handled by them. The
concept of OpenID is widely used today for accessing mails and
managing different online tools. We need to study the licensing
terms of the VCS servers so as to know the feasibility of such a
Single-Sign-On protocol.

6 ACKNOWLEDGEMENT
We sincerely thank Mr Subhransu Behera of RedHat
Technologies for his encouragement, support and ideas.

7 CONCLUSION
An in-depth analysis of distributed working approach for version
control system implemented under the pserver and challenge
based authentication was carried out. It gives much flexibility to

the users. This makes record keeping and collaboration much
easier. A distributed system shall enable us to access from
different clients and implement the project changes successfully.

It was observed that the pserver mode is a password
authentication protocol. The encrypted passwords have to be
present on the client, as well as the cvs working directories need
to be incorporated. Thus the distributed working can be ensured
by coping the .cvspass file into the new client’s home directory as
well as the various working modules and configure the cvs_rsh
variable of the new client.

However, the password based system has its own flaws (as
discussed in section 3.3). Thus the challenge based authentication
is a much more preferable authentication system. This works by
generating a key pair and the access is granted by the unique
combination of user name and host name as studied. So, we need
to have the same set for proper implementation.

Keeping these in view, we proposed the Layer X method in which
a layer was placed on the CVS Server. When the user logged in
this layer transformed his login into the global identity which the
server recognized. Thus, we see that irrespective of the host name
the client could be authenticated. Client-independent access
enables it to be implemented in web based access also. We have
also minutely analyzed all the aspects of Layer X and the future
work has been appropriately suggested.

8 REFERENCES
[1] B.C.Sussman, B.W.Fitzpatrick and C.M.Pilato. 2007.

Version Control with Subversion, Second Edition.
[2] J. Vesperman. 2003. Essential CVS. pp. 197-200.
[3] Karl Fogel and Moshe Bar. 2000. Open Source Development

with CVS, 3rd Edition.
[4] R. Bragg, M. R. Ousley and K. Strassberg. 2004. Network

Security: The Complete Reference. pp- 139
[5] J. Maliery. 2005. Hardening Network Security. pp-104

