
International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

186

Design and Implementation of a String Matching System
for Network Intrusion Detection using FPGA-based low

power multiple-hashing Bloom Filters
Arun M

Lecturer – ECE / Research Scholar
KSR College of Engineering

Tiruchengode – 637 215

+91 9942533393

aruninvlsi@gmail.com

Dr. A. Krishnan

Dean
KSR College of Engineering

Tiruchengode – 637 215
+91 4288 274757

amasikrishnan@hotmail.com

Prof.PS.Periasamy
Professor/ECE

KSR College of Engineering
Tiruchengode – 637 215

+91 4288 2274757

psp_03@yahoo.co.in

ABSTRACT
Modern Network Intrusion Detection Systems (NIDS) inspect the
network packet payload to check if it conforms to the security
policies of the given network. This process, often referred to as
deep packet inspection, involves detection of predefined signature
strings or keywords starting at an arbitrary location in the
payload. String matching is a computationally intensive task and
can become a potential bottleneck without high-speed processing.
Since the conventional software-implemented string matching
algorithms have not kept pace with the increasing network speeds,
special purpose hardware, Field Programmable Gate Arrays
(FPGAs), have been introduced. A Bloom filter is a simple space-
efficient randomized data structure for representing a set in order
to support string matching of Network Intrusion Detection System
(NIDS). Bloom filters allow false positives but the space savings
often outweigh this drawback when the probability of an error is
controlled. FPGAs have achieved sufficient capability to
performing complex network processing in programmable
hardware. Network devices utilizing FPGAs show a desirable
balance between performance and flexibility, which makes FPGA
preferable to pure software and ASIC solutions. We present an
implementation of low power multiple hashing bloom filter using
FPGAs. We describe how multiple hashing Bloom filters can be
implemented feasibly on Xilinx XCV2000E FPGA.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability - Performance
Analysis and Design Aids; C.2.M [Computer Communications
Networks]: Miscellaneous;

General Terms
Algorithm, Performance, Design

Keywords

Bloom filter, false positive, false negative, FPGA, NDIS, String
Matching, Hash function

1 INTRODUCTION
Network Intrusion Detection System is one of the security
application can be made use of multi-hashing schemes. Not only
the software applications but also some hardware systems depend
upon the properties of a high performing multi-hashing scheme.
Such a multi-hashing scheme generally appears in the form of a
Bloom filter [1]. A detailed survey of Bloom filters for
networking applications can be found in [2]. A hardware system,
FPGAs, consisting of Bloom filters to detect malignant content, is
described in [4]. Although Bloom filters have found wide spread
usage in networking applications, they are not conservative in
terms of power. A network intrusion detection system (NIDS)
consists of 4 Bloom filter engines can dissipate up to 5W [5]. To
decrease the power consumption of Bloom filter, a new lookup
technique is proposed [5], which basically makes use of less
number of hash function computations to determine the
maliciousness of the network stream. The architecture to
implement this new lookup technique in Bloom filter is presented
in [5], in which mathematical analysis carried out clearly states
the efficiency of the new lookup technique in terms of power.
This paper presents hardware architectures for implementation of
the different classes of the hash functions utilized in programming
and lookup operations of Bloom filter. The implementation results
using Xilinx XCV2000E FPGA with different hashing functions
in varying configurations of the Bloom filter is discussed.

2 BLOOM FILTER THEORY
Bloom filter was formulated by Burton H. Bloom in 1970 [1] and
is used widely today for different purposes including web
caching, intrusion detection, content based routing [2]. The theory
behind Bloom filters is described in this section. Given a string X,
the Bloom filter computes k hash functions on it producing hash
values ranging from 1 to m. It then sets k bits in a m bit long
vector at the addresses corresponding to the k hash values. The
same procedure is repeated for all the members of the set. This
process is called “programming” of the filter. Figure 1 illustrates
this concept. In this figure, two messages, X1, X2 are being
programmed in the Bloom filter which has k=4 hash functions
and m=13 bits in the array. Note that different strings can have
overlapping bit patterns as shown in this figure. The query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

187

process is similar to programming, where a string whose
membership is to be verified is input to the filter. The Bloom filter
generates k hash values using the same hash functions it used to
program the filter. The bits in the m - bit long vector at the
locations corresponding to the k hash values are looked up. If at
least one of these k bits is found not set then the string is declared
to be a non-member of the set. If all the bits are found to be set
then the string is said to belong to the set with a certain
probability. This uncertainty in the membership comes from the
fact that those k bits in the m-bit vector can be set by any of the
n members. Thus finding a bit set does not necessarily imply that
it was set by the particular string being queried. However, finding
a bit not set certainly implies that

Figure 1.Programming multiple strings in the Bloom filter.
Strings X1 and X2 are being programmed. Here k=4 and
m=13

Figure 2. Querying a Bloom filter with a string. Bloom filter

gives a ‘match’ for string Y since all the hash bits are set

Figure 3. False positives. Bloom filter gives a match for string
Z though it is not programmed in it, since all the hash bits are

set. This is a false positive

the string does not belong to the set, since if it did then all the k
bits would definitely have been set when the Bloom filter was
programmed with that string. This explains the presence of false
positives in this scheme, and the absence of any false negatives.
The concept is illustrated in Figures 2 and 3. A string Y is input
for verifying its membership. The same hash functions calculate k
hash values over Y and all the bits corresponding to these hash
values are found to be set. Similarly when another string Z is
input for membership verification, all the corresponding bits in
the bit array are found to be set although there is no such string
programmed in the filter, i.e. neither X1 nor X2 has the same bit
pattern as Z. Hence, clearly it is a false positive. The false positive
rate, f, is expressed as [1]

 (1)
Where, n is the number of strings programmed into the Bloom
filter. The value of f can be reduced by choosing appropriate
values of m and k for a given size of the member set, n. It is clear
that the value of m needs to be quite large compared to the size of
the string set i.e., n. Also, for a given ratio of m/n, the false
positive probability can be reduced by increasing the number of
hash functions k. In the optimal case, when false positive
probability is minimized with respect to k, we get the following
relation

 (2)
This corresponds to a false positive probability of

 (3)
The ratio m/n can be interpreted as the average number of bits
consumed by a single member of the set. It should be noted that
this space requirement is independent of the actual size of the
member. In the optimal case, the false positive probability
decreases exponentially with a linear increase in the ratio m/n.
Secondly, this also implies that the number of hash functions, k,
and hence the number of random lookups in the bit vector
required to query one membership is proportional to m/n.

2.1 Typical Bloom Filter

Figure 4. Block Diagram of typical Bloom filter

A block diagram of a typical Bloom filter is illustrated in Fig. 4.
Given a string X, which is a member of the signature set, a Bloom
filter computes k many hash values on the input X by using k
different hash functions. Then it uses these hash values as index
to the m-bit long lookup vector. It sets the bits corresponding to
the index given by the hash values computed. It repeats this
procedure for each member of the signature set. For an input
string Y, Bloom filter computes k many hash values by utilizing
the same hash functions used in programming of the bloom filter.
Bloom filter looks up the bit values located on the offsets
(computed hash values) on the bit vector. If it finds any bit unset
at those addresses, it declares the input string to be a nonmember
of the signature set, which is called a mismatch. Otherwise, it
finds all the bits are set, it concludes that input string may be a
member of e signature set with a false positive probability, which
is called a match.

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

188

3 LOW POWER LOOK UP
A Bloom filter never produces false negatives, which means if it
decides that an input is a nonmember, input certainly does not
belong to the signature set. However, it may produce false
positives. It may conclude that the input is a member of the
signature set, although in reality the input may not be a member
of the set. Following the analysis of [4], the false positive
probability f is calculated by (1). In order to minimize the false
positive probability, the value of m must be quite larger than n.
For a fixed value of m/n, k must be large enough such that f gets
minimized. Since the number of hash functions in Bloom filters is
large to reduce the false positive probability, it is intuitive that
their total power consumptions are large. During the
programming phase of the Bloom filter, not much can be done to
reduce the power consumption; otherwise Bloom filter will
produce many false positives. However, while performing
lookups over the Bloom filter, the number of hash functions used
to produce a decision can be reduced significantly. This is
because Bloom filter never makes false negatives, and it is
enough to find a zero on the m-bit long lookup vector to conclude
that there is a mismatch. Ilhan Kaya [5] calls this type of lookup
operation as low power lookup technique. The architecture to
support such a lookup operation for a multi-hashing scheme is
illustrated in Figure 5.

Figure 5. Block Diagram of low power look up Bloom filter

4 PRACTICAL HASHING FUNCTIONS
This section explains three different types of practical hashing
functions. Performances of different hash functions in hardware
are investigated in [6]. We utilized three different types of hash
functions in Bloom filters to examine the effects of them on the
performance of low power lookup technique and device
utilization of multi-hashing schemes on Xilinx XCV2000E
FPGA.

4.1 H3 class of universal hash functions
Universal class of hash functions are first introduced by Carter
J.L. [3]. They defined a special class of hash functions and called
them as class H3. The definition is as follows. Given any string X,
consisting of b bits, X = <x1, x2, x3, . . . , xb> ith hash function
over the string X is defined as

hi(x) = di1 • x1 di2 • x2 di3 • x3 . ……..dib • xb (4)

where dij ’s are random coefficients uniformly distributed
between 1 to size of the lookup vector, m, and xk is the kth bit of
the input string. • is a bit by bit AND operation, and is a
logical exclusive OR (XOR) operation. A block diagram of the
H3 class of hash functions implemented is given in Figure 6.

Implementation of these type of hash function requires 16 2-input
AND gates and a single 16-input XOR gate for a 16 bit signature.
They produce key values as the same size of the input.

Figure 6. A block diagram of a H3 class of universal hash

function

4.2 Bit Extraction hashing functions
This type of hashing functions consists of selecting j bits out of b
bits of the signature. Depending on the selection fashion of these
bits out of input signature, they are classified as regular and
randomized bit extraction hash functions. Since regular bit
extraction hashing functions are constrained in number by the
input length, we have used randomized bit extraction hash
functions. Definition of a randomized bit extraction hashing
function is as follows. Given any string X, consisting of b bits,

X = <x1, x2, x3, . . . , xb> ith hash function over the string X is
defined as

hi(x) = <xl1, xl2, xl3, . . . , xlj> (5)

where lj ’s are random bit positions uniformly distributed between
one to size of the input signature in bits, b, and xlj is the input bit
located at lj . A block diagram of randomized bit extraction hash
functions implemented is illustrated in Figure 7.

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

189

Figure 7. A block diagram of a bit extraction hash function

Implementation of these types of hash functions requires 8 2-input
AND gates and a single 8-input XOR gate for a 16 bit signature.
Shifter is necessary to left shift the bits in input as speci.ed by
random number, lj . These types of hash functions produce key
values shorter in bits than the size of the signature.

4.3 Hashing functions from XOR method
These types of hash functions partition the b bit long input
signature into j bits of segments. The segments are XOR-ed to get
the hash value. The segments can be formed either in a regular
manner or randomly like bit extraction hash functions. Since we
want to have random indices, we have used random segment
forming hash functions. The definition of the hashing functions
from XOR method is as follows. Given any string X, consisting of
b bits, X = <x1, x2, x3, . . . , xb> ith hash function over the string
X is defined as

hi(x) = (xs1 xs2)(xs3 xs4) . . . , (xsj-1 xsj) (6)

where sj ’s are the uniformly distributed random bit positions in
input string. xsj are the bits at the position specified by sj . There
are two segments of length j-bits are formed and XOR-ed. Figure
8 illustrates a block diagram of a hash function from XOR
method.

Figure 8. A block diagram of hash function using XOR

method

Implementation of these types of hash functions requires a shifter
to get to the bit at the random position, plus 8 2- input XOR gates,
and a 8-inputXOR gate. The length of the resulting hash value is
smaller in bits than the input.

5 IMPLEMENTATION RESULTS
Logical designs of low power look up bloom filter with respect to
types of hashing functions were implemented on Xilinx
XCV2000E FPGA and utilization of LUTs, Flip Flops and Block

RAMs are summarized in the following table. Device utilization
is higher in the type of bit extraction hashing function.

Table 2. Table captions should be placed above the table
Hashing
Function LUTs Flip Flops Block

RAMs

Universal
2990

(4.4%)
2295 6

Bit Extraction
4550

(9%)
3998 7

XOR Method
3050

(4.5%)
2567 6

6 CONCLUSION
When compare to the device utilization of Bloom filter for string
matching proposed by [4], low power look up Bloom filter of
different hash functions [5] consumes double the devices on
Xilinx XCV2000E FPGA. Power consumption of Bloom filter is
reduced when adopting low power look up and proven
theoretically [5]. Implementation and its observation reflect the
tradeoff between the space and power.

7 REFERENCES
[1] Bloom, B., “Space/Time Trade-Offs in Hash Coding with

Allowable Errors”, Commun. ACM, vol.13, no. 7, pp. 422-
426, July 1970.

[2] Broder, A., and Mitzenmacher, M., “Network Applications
of Bloom Filters: A Survey”, Internet Mathematics, vol. 1,
no. 4, pp. 485-509, July 2003.

[3] Carter, J. L. and Wegman, M., “Universal classes of hash
functions”, Journal of Computer and System Sciences, vol.
18, pp. 143-154, 1978.

[4] Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S. and
Lockwood, J. W. “Deep Packet Inspection Using Parallel
Bloom Filters”, IEEE Micro, vol. 24, no. 1, pp. 52-61, 2004.

[5] Ilhan Kaya, Taskin Kocak, “A Low Power Lookup
Technique for Multi-Hashing Network Applications”, IEEE
Computer Society, Proceedings of the 2006 Emerging VLSI
Technologies and Architectures (ISVLSI’06)

[6] Ramakrishna, M., Fu, E. and Bahcekapili, E., “Efficient
Hardware Hashing Functions for High performance
Computers”, IEEE Trans. on Computers, vol. 48, no. 12, pp.
1378-1381, 1997.

