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ABSTRACT 
Modern Network Intrusion Detection Systems (NIDS) inspect the 
network packet payload to check if it conforms to the security 
policies of the given network. This process, often referred to as 
deep packet inspection, involves detection of predefined signature 
strings or keywords starting at an arbitrary location in the 
payload. String matching is a computationally intensive task and 
can become a potential bottleneck without high-speed processing. 
Since the conventional software-implemented string matching 
algorithms have not kept pace with the increasing network speeds, 
special purpose hardware, Field Programmable Gate Arrays 
(FPGAs), have been introduced. A Bloom filter is a simple space-
efficient randomized data structure for representing a set in order 
to support string matching of Network Intrusion Detection System 
(NIDS). Bloom filters allow false positives but the space savings 
often outweigh this drawback when the probability of an error is 
controlled. FPGAs have achieved sufficient capability to 
performing complex network processing in programmable 
hardware. Network devices utilizing FPGAs show a desirable 
balance between performance and flexibility, which makes FPGA 
preferable to pure software and ASIC solutions.  We present an 
implementation of low power multiple hashing bloom filter using 
FPGAs. We describe how multiple hashing Bloom filters can be 
implemented feasibly on Xilinx XCV2000E FPGA.     

Categories and Subject Descriptors 
B.8.2 [Hardware]: Performance and Reliability - Performance 
Analysis and Design Aids; C.2.M [Computer Communications 
Networks]: Miscellaneous;  

General Terms 
Algorithm, Performance, Design 

Keywords 

Bloom filter, false positive, false negative, FPGA, NDIS, String 
Matching, Hash function 

1 INTRODUCTION 
Network Intrusion Detection System is one of the security 
application can be made use of multi-hashing schemes. Not only 
the software applications but also some hardware systems depend 
upon the properties of a high performing multi-hashing scheme. 
Such a multi-hashing scheme generally appears in the form of a 
Bloom filter [1].  A detailed survey of Bloom filters for 
networking applications can be found in [2].  A hardware system, 
FPGAs, consisting of Bloom filters to detect malignant content, is 
described in [4]. Although Bloom filters have found wide spread 
usage in networking applications, they are not conservative in 
terms of power. A network intrusion detection system (NIDS) 
consists of 4 Bloom filter engines can dissipate up to 5W [5]. To 
decrease the power consumption of Bloom filter, a new lookup 
technique is proposed [5], which basically makes use of less 
number of hash function computations to determine the 
maliciousness of the network stream. The architecture to 
implement this new lookup technique in Bloom filter is presented 
in [5], in which mathematical analysis carried out clearly states 
the efficiency of the new lookup technique in terms of power. 
This paper presents hardware architectures for implementation of 
the different classes of the hash functions utilized in programming 
and lookup operations of Bloom filter. The implementation results 
using Xilinx XCV2000E FPGA with different hashing functions 
in varying configurations of the Bloom filter is discussed. 

2 BLOOM FILTER THEORY 
Bloom filter was formulated by Burton H. Bloom in 1970 [1] and 
is used widely today for different purposes including web 
caching, intrusion detection, content based routing [2]. The theory 
behind Bloom filters is described in this section. Given a string X, 
the Bloom filter computes k hash functions on it producing hash 
values ranging from 1 to m. It then sets k bits in a m bit long 
vector at the addresses corresponding to the k hash values. The 
same procedure is repeated for all the members of the set. This 
process is called “programming” of the filter. Figure 1 illustrates 
this concept. In this figure, two messages, X1, X2 are being 
programmed in the Bloom filter which has k=4 hash functions 
and m=13 bits in the array. Note that different strings can have 
overlapping bit patterns as shown in this figure. The query 
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process is similar to programming, where a string whose 
membership is to be verified is input to the filter. The Bloom filter 
generates k hash values using the same hash functions it used to 
program the filter. The bits in the m - bit long vector at the 
locations corresponding to the k hash values are looked up. If at 
least one of these k bits is found not set then the string is declared 
to be a non-member of the set. If all the bits are found to be set 
then the string is said to belong to the set with a certain 
probability. This uncertainty in the membership comes from the 
fact that those k   bits in the m-bit vector can be set by any of the 
n members. Thus finding a bit set does not necessarily imply that 
it was set by the particular string being queried. However, finding 
a bit not set certainly implies that  

 
Figure 1.Programming multiple strings in the Bloom filter. 
Strings X1 and X2 are being programmed. Here k=4 and 
m=13  

 
Figure 2.  Querying a Bloom filter with a string. Bloom filter 

gives a ‘match’ for string Y since all the hash bits are set 

 
Figure 3. False positives. Bloom filter gives a match for string 
Z though it is not programmed in it, since all the hash bits are 

set. This is a false positive 
 
the string does not belong to the set, since if it did then all the k 
bits would definitely have been set when the Bloom filter was 
programmed with that string. This explains the presence of false 
positives in this scheme, and the absence of any false negatives. 
The concept is illustrated in Figures 2 and 3. A string Y is input 
for verifying its membership. The same hash functions calculate k 
hash values over Y and all the bits corresponding to these hash 
values are found to be set. Similarly when another string Z is 
input for membership verification, all the corresponding bits in 
the bit array are found to be set although there is no such string 
programmed in the filter, i.e. neither X1 nor X2 has the same bit 
pattern as Z. Hence, clearly it is a false positive. The false positive 
rate, f, is expressed as [1]   

               (1) 
Where, n is the number of strings programmed into the Bloom 
filter. The value of f can be reduced by choosing appropriate 
values of m and k for a given size of the member set, n. It is clear 
that the value of m needs to be quite large compared to the size of 
the string set i.e., n. Also, for a given ratio of m/n, the false 
positive probability can be reduced by increasing the number of 
hash functions k. In the optimal case, when false positive 
probability is minimized with respect to k, we get the following 
relation  

                    (2) 
This corresponds to a false positive probability of     

 (3) 
The ratio m/n can be interpreted as the average number of bits 
consumed by a single member of the set. It should be noted that 
this space requirement is independent of the actual size of the 
member. In the optimal case, the false positive probability 
decreases exponentially with a linear increase in the ratio m/n.  
Secondly, this also implies that the number of hash functions, k, 
and hence the number of random lookups in the bit vector 
required to query one membership is proportional to m/n. 

 

2.1 Typical Bloom Filter 
 

 
Figure 4.  Block Diagram of typical Bloom filter 

 
A block diagram of a typical Bloom filter is illustrated in Fig. 4. 
Given a string X, which is a member of the signature set, a Bloom 
filter computes k many hash values on the input X by using k 
different hash functions. Then it uses these hash values as index 
to the m-bit long lookup vector. It sets the bits corresponding to 
the index given by the hash values computed. It repeats this 
procedure for each member of the signature set. For an input 
string Y, Bloom filter computes k many hash values by utilizing 
the same hash functions used in programming of the bloom filter. 
Bloom filter looks up the bit values located on the offsets 
(computed hash values) on the bit vector. If it finds any bit unset 
at those addresses, it declares the input string to be a nonmember 
of the signature set, which is called a mismatch. Otherwise, it 
finds all the bits are set, it concludes that input string may be a 
member of e signature set with a false positive probability, which 
is called a match. 
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3 LOW POWER LOOK UP 
A Bloom filter never produces false negatives, which means if it 
decides that an input is a nonmember,   input certainly does not 
belong to the signature set. However, it may produce false 
positives. It may conclude that the input is a member of the 
signature set, although in reality the input may not be a member 
of the set. Following the analysis of [4], the false positive 
probability f is calculated by (1). In order to minimize the false 
positive probability, the value of m must be quite larger than n. 
For a fixed value of m/n, k must be large enough such that f gets 
minimized. Since the number of hash functions in Bloom filters is 
large to reduce the false positive probability, it is intuitive that 
their total power consumptions are large. During the 
programming phase of the Bloom filter, not much can be done to 
reduce the power consumption; otherwise Bloom filter will 
produce many false positives. However, while performing 
lookups over the Bloom filter, the number of hash functions used 
to produce a decision can be reduced significantly. This is 
because Bloom filter never makes false negatives, and it is 
enough to find a zero on the m-bit long lookup vector to conclude 
that there is a mismatch. Ilhan Kaya [5] calls this type of lookup 
operation as low power lookup technique. The architecture to 
support such a lookup operation for a multi-hashing scheme is 
illustrated in Figure 5. 

 

 
 

Figure 5.  Block Diagram of low power look up Bloom filter 
 
 

4 PRACTICAL HASHING FUNCTIONS 
This section explains three different types of practical hashing 
functions. Performances of different hash functions in hardware 
are investigated in [6]. We utilized three different types of hash 
functions in Bloom filters to examine the effects of them on the 
performance of low power lookup technique and device 
utilization of multi-hashing schemes on Xilinx XCV2000E 
FPGA. 

4.1 H3 class of universal hash functions 
Universal class of hash functions are first introduced by Carter 
J.L. [3]. They defined a special class of hash functions and called 
them as class H3. The definition is as follows. Given any string X, 
consisting of b bits, X = <x1, x2, x3, . . . , xb> ith hash function 
over the string X is defined as  
 
hi(x) = di1 • x1     di2 • x2     di3 • x3 . ……..dib •  xb        (4)  

 
where dij ’s are random coefficients uniformly distributed 
between 1 to size of the lookup vector, m, and xk  is the kth bit of 
the input string. • is a bit by bit AND operation, and       is a 
logical exclusive OR (XOR) operation. A block diagram of the 
H3 class of hash functions implemented is given in Figure 6. 

Implementation of these type of hash function requires 16 2-input 
AND gates and a single 16-input XOR gate for a 16 bit signature. 
They produce key values as the same size of the input.  

 
Figure 6. A block diagram of a H3 class of universal hash 

function 

4.2 Bit Extraction hashing functions 
This type of hashing functions consists of selecting j bits out of b 
bits of the signature. Depending on the selection fashion of these 
bits out of input signature, they are classified as regular and 
randomized bit extraction hash functions. Since regular bit 
extraction hashing functions are constrained in number by the 
input length, we have used randomized bit extraction hash 
functions. Definition of a randomized bit extraction hashing 
function is as follows. Given any string X, consisting of b bits,  

X = <x1, x2, x3, . . . , xb> ith hash function over the string X  is 
defined as  

hi(x) = <xl1, xl2, xl3, . . . , xlj> (5) 
 

where lj ’s are random bit positions uniformly distributed between 
one to size of the input signature in bits, b, and xlj is the input bit 
located at lj . A block diagram of randomized bit extraction hash 
functions implemented is illustrated in Figure 7. 
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Figure 7. A block diagram of a bit extraction hash function 
 
Implementation of these types of hash functions requires 8 2-input 
AND gates and a single 8-input XOR gate for a 16 bit signature. 
Shifter is necessary to left shift the bits in input as speci.ed by 
random number, lj . These types of hash functions produce key 
values shorter in bits than the size of the signature. 

4.3 Hashing functions from XOR method 
These types of hash functions partition the b bit long input 
signature into j bits of segments. The segments are XOR-ed to get 
the hash value. The segments can be formed either in a regular 
manner or randomly like bit extraction hash functions. Since we 
want to have random indices, we have used random segment 
forming hash functions. The definition of the hashing functions 
from XOR method is as follows. Given any string X, consisting of 
b bits, X = <x1, x2, x3, . . . , xb>  ith hash function over the string 
X is defined as  

 
hi(x) = (xs1    xs2 )(xs3    xs4 ) . . . , (xsj-1    xsj )          (6) 

 
where sj ’s are the uniformly distributed random bit positions in 
input string. xsj are the bits at the position specified by sj . There 
are two segments of length j-bits are formed and XOR-ed. Figure 
8 illustrates a block diagram of a hash function from XOR 
method. 

 
Figure 8. A block diagram of hash function using XOR 

method 
 
Implementation of these types of hash functions requires a shifter 
to get to the bit at the random position, plus 8 2- input XOR gates, 
and a 8-inputXOR gate. The length of the resulting hash value is 
smaller in bits than the input. 

5 IMPLEMENTATION RESULTS 
Logical designs of low power look up bloom filter with respect to 
types of hashing functions were implemented on Xilinx 
XCV2000E FPGA and utilization of LUTs, Flip Flops and Block 

RAMs are summarized in the following table. Device utilization 
is higher in the type of bit extraction hashing function. 
 

Table 2. Table captions should be placed above the table 
Hashing 
Function LUTs Flip Flops Block 

RAMs 

Universal 
2990 

(4.4%) 
2295 6 

Bit Extraction 
4550 

(9%) 
3998 7 

XOR Method 
3050 

(4.5%) 
2567 6 

6 CONCLUSION 
When compare to the device utilization of Bloom filter for string 
matching proposed by [4], low power look up Bloom filter of 
different hash functions [5] consumes double the devices on 
Xilinx XCV2000E FPGA. Power consumption of Bloom filter is 
reduced when adopting low power look up and proven 
theoretically [5]. Implementation and its observation reflect the 
tradeoff between the space and power. 
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