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ABSTRACT 
A new Evaluation method is proposed which view an Artificial 
Intelligence system as a model and leads to certain criteria for 
testing methodologies. This includes a discussion of how certain 
mathematical techniques for testing Artificial Intelligence systems 
can be used as criteria for Artificial Intelligence system adequacy 
when no other models are available. We give an example of an 
error due to widespread rule interactions. Such errors are keys to 
understanding why the independent rule assumption does not 
work, and therefore why Artificial Intelligence systems must be 
modeled. We examine how testing can be applied both to 
individual system components as well as the system as a whole, 
different criteria by which a set of test cases can be assembled and 
the problems in determining whether the performance of a 
Artificial Intelligence systems on a set of test cases is acceptable.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Deduction and Theorem Proving – 
Answer/reason extraction, Deduction. 

General Terms 
Measurement, Theory, Verification. 

Keywords 
Artificial Intelligence, Evaluation method. 

1 INTRODUCTION 
Modeling is vital to the design, verification, validation, and 
testing of Artificial Intelligence systems [1], so we present the 
basic argument that building an AI System is building a model. 
One of the problems we discuss is that those developers had an 
overly rigid concept of what modeling is [2,3]. We show that in 
fact rules are not independent, and that therefore we must 
approach Artificial Intelligence systems from a modeling 
perspective.  

We will discuss of how certain mathematical techniques for 

testing Artificial Intelligence systems can be used as criteria for 
Artificial Intelligence systems adequacy when no other models 
are available. The Artificial Intelligence systems models will 
determine the testing strategy, for example, how we sample and 
select cases, prioritize functions, and, as we suggest, place probes. 
The models will also determine the amount and kind of structural 
and functional testing. 

2 BUILDING CORRECT     
INTELLIGENCE SYSTEMS 

2.1 Background 
Every Testing analysts knows that reading and understanding 
code is much harder than reading and understanding high-level 
descriptions of a system. For example, before reading the “C” 
code, an analyst might first study some high-level design 
documents. The problem with conventional software is that there 
is no guarantee the high-level description actually corresponds to 
the low-level details of the system [4].  

A distinct advantage of model-based Artificial Intelligence 
systems is that the high-level description is the system [5]. A 
common technique used in AI is to define a specialized, succinct, 
high-level modeling language for some domain. This high-level 
language is then used to model the domain. If another automatic 
tool is used to directly execute that notation, then we can 
guarantee that the high-level model a correspondence to the low-
level execution details. These models are often declarative and 
testing analysts can exploit such declarative knowledge for their 
analysis. Declarative representations can best be understood by 
comparing them to procedural representations used in standard 
procedural languages such as “C”.  

2.2 Examples of Widespread Errors 
At the quite beginning, builders of expert systems basically 
attempted to debug the knowledge base by running test cases and 
interacting with a human expert in such a fashion that the expert 
could state objections to the conclusions and to the use of rules. 
They divide errors that may occur into two types: inconsistency 
and incompleteness. Their solution to inconsistency is to construct 
a table of all possible combinations of the antecedents’ values and 
their corresponding values for a given concluding parameter and 
then to check for redundancies and contradictions among the 
rules. Although this consistency checking is a valuable tool, it 
does not pick up all the errors in a rulebase, especially if the 
errors stretch across several tables.  
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Figure 1 is a picture of a fragment from an imaginary rulebase in 
a decision aid to help general physicians diagnose and treat 
patients.  

 
Figure 1. Diabetes flow example 

 
The resulting flow graph is sometimes loosely described as a 
“logic tree”; in practice, this graph may not satisfy the 
mathematical definition of a “tree” (as the graph in Figure l does 
not). 

As is common and appropriate in creating a rulebase, the expert 
will take the same initial assertions and “build” them into chains 
of assertions that support different possible scenarios or 
hypotheses, resulting in distinct conclusions. The result of this is 
that sometimes the same piece of information or an initial 
assertion will be fed into a number of different “lines of 
reasoning,” some of which may reconverge. When this happens 
we call that assertion a “common source”; a common source may 
or may not lead to an error. Table 1 is the subset of rules for the 
fictitious Diabetes example shown in cure 1 that is concerned with 
patient fatigue. Because of a common-source error even though 
there are no “local” inconsistencies, assertion 13 can not be 
assigned True. 

In order to assign assertion 13 True, both assertions 9 and 10 must 
be assigned True. However, assertion 6 cannot be True (as needed 
for assertion 10 to be True) and False (as needed for assertion 9 to 
be True) at the same time. 

This example illustrates a relatively plausible (though simplified) 
story of how interactions among rules can lead to unexpected 
results. The cumulative effect across several assertions is that 
some rules can never be activated. If a knowledge-base is 
expressed in functions or objects that can change the rules during 
execution, then we cannot detect all common sources, except in 
special cases. 

One response to this error may be to ban common sources by, for 
example, rewording assertions so that no one can use the same 
assertion as input to several other assertions. This type of “quick 
fix” mentality is pervasive among rulebase developers and is a 
serious mistake. The above common-source error is one way in 
which information can unwittingly drop out, be misused, or be 
underutilized by a rulebase. It also suggests that such misuse can 
involve wide groups of rules. 

2.3 Clarifying Model(s) Underlying Diabetes 
Example 
First and most important is the clarification and specification of 
the goals. In addition to clarifying and tightening the goals, 
another important quality of a modeling approach is that it 
explicitly links measurements to the variables they represent, 
together with the assumptions and limitations underlying the use 
of those measurements. 

Table 4. Example of patient fatigue 
Assertion: 4 5 6  9   
Rule        

R41 F F F  F   
R42 F F T  F   
R43 F T T  F   
R44 F T F  F   
R45 T F F  F   
R46 T F T  F   
R47 T T T  F   
R48 T T F  T   
        
Assertion:  6 7  10  
R61   F F  F  
R62   F T  F  
R63   T F  F  
R64   T T  T  
        
Assertion:    9 10 13 
R91     F F F 
R92     F T F 
R93     T F F 
R94     T T T 

 

A lot of errors both at the semantic and syntactic levels occur 
because ① It is tricky to combine disparate types of information 

safely and usefully, and ② Knowledge base developers have 
often lost track of what the original measurement or assertion was 
supposed to represent, and have often reinterpreted it, cleverly but 
untrustworthily, in other parts of the knowledge base. Different 
levels of detail in a model require different fundamental terms and 
relationships. More generally, different models are invoked by 
different questions and situations. 

3 MODEL-BASED TESTING DESIGN 
ON ARTIFICIAL INTELLIGENCE 
SYSTEMS 

3.1 Building Testable Artificial Intelligence 
Systems  
Two questions always arise when any system is tested: How 
many cases are needed? Which cases should be selected? The 
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models in an Artificial Intelligence system are fundamental to all 
these suggestions, from characterizing and prioritizing the 
Artificial Intelligence systems functions, to modularizing the 
Artificial Intelligence systems, or forming intervening variables to 
deciding what capabilities are worth what testing efforts. 

In order to design testable Artificial Intelligence systems, we need 
to be able to relate and track the functional requirements (goals of 
the Artificial Intelligence systems) to the Artificial Intelligence 
system implementation. Another key factor in making more 
testable Artificial Intelligence systems is the development of 
better Artificial Intelligence systems languages.  

3.2 Limit Artificial Intelligence System to 
Propositional Logic 

Propositional calculus (Boolean or sentential logic) is finitely 
decidable (though the size of the finite decision process may be 
impractically large), but rules that require predicate calculus are 
not finitely decidable (and may therefore be undecidable). 
Nevertheless, some rulebases which are written in syntax that 
appears to involve predicate calculus, while in reality the rules 
can be completely translated into Boolean polynomials; thus, the 
appearance of needing predicate calculus may be illusory.  

For example, a rule in one of our rulebases, used the phrase “all 
phenomena”. However, in this case it meant merely a list of 
phenomena covered by the rulebase and did not essentially 
involve predicate logic. If your system is written in, or translated 
into, Boolean expressions, then an upper bound on the number of 
input conditions needed for exhaustive testing is 2 to the power of 
the number of (Boolean) input variables. If this is too many for 
practical testing (which includes not only the number of tests that 
need to be constructed and carried out, but also includes the time 
that we have to spend on checking and analyzing the results), then 
consider intervening variables.  

3.3 Intervening Variables in Reducing Testing  
Summary variables can greatly reduce the number of test 
conditions required for complete testing of a rule-based system. If 
(A) a system has 40 variables and no intervening or summary 
variables, then there are 240 = 1 099 511 627 776 (about a trillion) 
conditions to test the system exhaustively. If (B) one devises four 
intervening variables, each of which responds to l0 of the original 
variables with a binary value, then there are only 4×210 + 24 = 4 
128 conditions to test. 

In most systems, exhaustive testing is infeasible, and one must 
instead select the tests based on a variety of more careful 
considerations, ranging from practical criteria, reflecting the time, 
cost, and difficulty in performing the tests, through mathematical 
and statistical criteria, regarding the sampling over the spaces of 
possible input and output variables, to functional criteria, 
corresponding to the importance of various system performance 
requirements. 

4 VALIDATION ANALYSES FOR 
ARTIFICIAL INTELLIGENCE 
SYSTEMS 

Validation is the process of ensuring that a software system 
satisfies the requirements of its users. Assuming that the 
requirements stated in the problem specification are correct, and 
then verification is part of validation concerned with establishing 

formalized properties of the system [6]. In addition to verification, 
validation also includes empirical evaluation techniques in which 
experiments are performed on the system, the results of which are 
analyzed carefully to determine whether the system is acceptable. 

4.1 Component Testing for Artificial 
Intelligence Systems 

Most often, knowledge bases are tested only as black boxes, that 
is, as an indivisible whole. However, there is potential for 
component or module testing for these systems in certain 
circumstances. One definite validation requirement for all 
Artificial Intelligence systems is to test that the inference engine 
satisfies the requirements specified in the system design model. 
As described earlier, depending on the exact approach followed 
by the developers, verification of the inference engine may be 
accomplished either by formal methods or empirical testing.  

In addition to performing testing of the inference engine 
separately, it may be possible to test components of the 
knowledge base independently, if the problem can be decomposed 
in a suitable manner. It may be possible to test task knowledge by 
providing simulated domain level knowledge. As a trivial 
example, if the domain knowledge consists only of the rules p�q 
and q�r, and we have a test case that says that, for input p, the 
system should produce output「r, and then it is easy to show that 
the knowledge base is inconsistent with this test case, and is 
therefore unacceptable. 

4.2 Obtaining a Test Suite 
A serious difficulty in obtaining such a set is that the diversity of 
situations in which an Artificial Intelligence system must perform 
is such that a representative set of cases will likely be very large, 
even when accounting for the existence of equivalence partitions 
within the input domains (that is, test cases that should be treated 
identically by the system). 

The problem of creating a suite of test cases is exacerbated by the 
fact that each test case is likely to be complex, because a typical 
Artificial Intelligence system solves complex problems presented 
as complex test cases. This means that, not only will it be difficult 
and time-consuming to create or transcribe each case, but also it 
may be difficult to specify what constitutes an acceptable output 
for the case. Although we cannot avoid the necessity of testing, 
we can seek to minimize the effort involved by minimizing the 
number of test cases required. 

Although random generation of test cases has proven very useful 
in testing conventional software, the complexity of Artificial 
Intelligence systems testing requires a more focused approach to 
test case creation. The most practical method for creating a set of 
test cases would seem to entail a combination of both structural 
and functional approaches. 

4.3 Judging System Acceptability  
One repercussion of this fact is that it may be difficult to choose 
an appropriate level of performance for the system to achieve in 
order to be accepted. A second repercussion is that it may be 
difficult to define a standard against which to judge the 
acceptability of the system. 

5 CONCLUSION 
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Despite the exaggerated claims and grandiosity of some of their 
developers, Artificial Intelligence systems have proven to be 
useful in approaching and solving some problems. The challenge 
is to build more correct and testable ones. A lot of what we 
suggest is simply good modeling and good software engineering,  

We consider models to be a fundamental part of improving 
Artificial Intelligence system design, verification, validation, and 
testing. A model is a framework for understanding and for doing 
something. Through models we view individual facts, view or 
work with the input, and evaluate whether overall the system is 
performing well—or whether input, output, and intermediate 
results were appropriate. We need to make the underlying models 
used in an Artificial Intelligence system explicit, well formed, and 
justified, and then we need to use these models to design the 
Artificial Intelligence systems System correctly from the outset 
and to form the basis of our testing decisions. Perhaps what we 
need the most is a change in our attitude towards testing. 
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