
International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

209

A New Evaluation Strategy for AI System Based on
Modeling Method

Wei Zhang
 Department of Software and Computing Theory

College of Computer
Wuhan, 430079, China

+86 027 63673786

magherozhw@gmail.com

ABSTRACT
A new Evaluation method is proposed which view an Artificial
Intelligence system as a model and leads to certain criteria for
testing methodologies. This includes a discussion of how certain
mathematical techniques for testing Artificial Intelligence systems
can be used as criteria for Artificial Intelligence system adequacy
when no other models are available. We give an example of an
error due to widespread rule interactions. Such errors are keys to
understanding why the independent rule assumption does not
work, and therefore why Artificial Intelligence systems must be
modeled. We examine how testing can be applied both to
individual system components as well as the system as a whole,
different criteria by which a set of test cases can be assembled and
the problems in determining whether the performance of a
Artificial Intelligence systems on a set of test cases is acceptable.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Deduction and Theorem Proving –
Answer/reason extraction, Deduction.

General Terms
Measurement, Theory, Verification.

Keywords
Artificial Intelligence, Evaluation method.

1 INTRODUCTION
Modeling is vital to the design, verification, validation, and
testing of Artificial Intelligence systems [1], so we present the
basic argument that building an AI System is building a model.
One of the problems we discuss is that those developers had an
overly rigid concept of what modeling is [2,3]. We show that in
fact rules are not independent, and that therefore we must
approach Artificial Intelligence systems from a modeling
perspective.

We will discuss of how certain mathematical techniques for

testing Artificial Intelligence systems can be used as criteria for
Artificial Intelligence systems adequacy when no other models
are available. The Artificial Intelligence systems models will
determine the testing strategy, for example, how we sample and
select cases, prioritize functions, and, as we suggest, place probes.
The models will also determine the amount and kind of structural
and functional testing.

2 BUILDING CORRECT
INTELLIGENCE SYSTEMS

2.1 Background
Every Testing analysts knows that reading and understanding
code is much harder than reading and understanding high-level
descriptions of a system. For example, before reading the “C”
code, an analyst might first study some high-level design
documents. The problem with conventional software is that there
is no guarantee the high-level description actually corresponds to
the low-level details of the system [4].

A distinct advantage of model-based Artificial Intelligence
systems is that the high-level description is the system [5]. A
common technique used in AI is to define a specialized, succinct,
high-level modeling language for some domain. This high-level
language is then used to model the domain. If another automatic
tool is used to directly execute that notation, then we can
guarantee that the high-level model a correspondence to the low-
level execution details. These models are often declarative and
testing analysts can exploit such declarative knowledge for their
analysis. Declarative representations can best be understood by
comparing them to procedural representations used in standard
procedural languages such as “C”.

2.2 Examples of Widespread Errors
At the quite beginning, builders of expert systems basically
attempted to debug the knowledge base by running test cases and
interacting with a human expert in such a fashion that the expert
could state objections to the conclusions and to the use of rules.
They divide errors that may occur into two types: inconsistency
and incompleteness. Their solution to inconsistency is to construct
a table of all possible combinations of the antecedents’ values and
their corresponding values for a given concluding parameter and
then to check for redundancies and contradictions among the
rules. Although this consistency checking is a valuable tool, it
does not pick up all the errors in a rulebase, especially if the
errors stretch across several tables.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

210

Figure 1 is a picture of a fragment from an imaginary rulebase in
a decision aid to help general physicians diagnose and treat
patients.

Figure 1. Diabetes flow example

The resulting flow graph is sometimes loosely described as a
“logic tree”; in practice, this graph may not satisfy the
mathematical definition of a “tree” (as the graph in Figure l does
not).

As is common and appropriate in creating a rulebase, the expert
will take the same initial assertions and “build” them into chains
of assertions that support different possible scenarios or
hypotheses, resulting in distinct conclusions. The result of this is
that sometimes the same piece of information or an initial
assertion will be fed into a number of different “lines of
reasoning,” some of which may reconverge. When this happens
we call that assertion a “common source”; a common source may
or may not lead to an error. Table 1 is the subset of rules for the
fictitious Diabetes example shown in cure 1 that is concerned with
patient fatigue. Because of a common-source error even though
there are no “local” inconsistencies, assertion 13 can not be
assigned True.

In order to assign assertion 13 True, both assertions 9 and 10 must
be assigned True. However, assertion 6 cannot be True (as needed
for assertion 10 to be True) and False (as needed for assertion 9 to
be True) at the same time.

This example illustrates a relatively plausible (though simplified)
story of how interactions among rules can lead to unexpected
results. The cumulative effect across several assertions is that
some rules can never be activated. If a knowledge-base is
expressed in functions or objects that can change the rules during
execution, then we cannot detect all common sources, except in
special cases.

One response to this error may be to ban common sources by, for
example, rewording assertions so that no one can use the same
assertion as input to several other assertions. This type of “quick
fix” mentality is pervasive among rulebase developers and is a
serious mistake. The above common-source error is one way in
which information can unwittingly drop out, be misused, or be
underutilized by a rulebase. It also suggests that such misuse can
involve wide groups of rules.

2.3 Clarifying Model(s) Underlying Diabetes
Example
First and most important is the clarification and specification of
the goals. In addition to clarifying and tightening the goals,
another important quality of a modeling approach is that it
explicitly links measurements to the variables they represent,
together with the assumptions and limitations underlying the use
of those measurements.

Table 4. Example of patient fatigue
Assertion: 4 5 6 9
Rule

R41 F F F F
R42 F F T F
R43 F T T F
R44 F T F F
R45 T F F F
R46 T F T F
R47 T T T F
R48 T T F T

Assertion: 6 7 10
R61 F F F
R62 F T F
R63 T F F
R64 T T T

Assertion: 9 10 13
R91 F F F
R92 F T F
R93 T F F
R94 T T T

A lot of errors both at the semantic and syntactic levels occur
because ① It is tricky to combine disparate types of information

safely and usefully, and ② Knowledge base developers have
often lost track of what the original measurement or assertion was
supposed to represent, and have often reinterpreted it, cleverly but
untrustworthily, in other parts of the knowledge base. Different
levels of detail in a model require different fundamental terms and
relationships. More generally, different models are invoked by
different questions and situations.

3 MODEL-BASED TESTING DESIGN
ON ARTIFICIAL INTELLIGENCE
SYSTEMS

3.1 Building Testable Artificial Intelligence
Systems
Two questions always arise when any system is tested: How
many cases are needed? Which cases should be selected? The

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

211

models in an Artificial Intelligence system are fundamental to all
these suggestions, from characterizing and prioritizing the
Artificial Intelligence systems functions, to modularizing the
Artificial Intelligence systems, or forming intervening variables to
deciding what capabilities are worth what testing efforts.

In order to design testable Artificial Intelligence systems, we need
to be able to relate and track the functional requirements (goals of
the Artificial Intelligence systems) to the Artificial Intelligence
system implementation. Another key factor in making more
testable Artificial Intelligence systems is the development of
better Artificial Intelligence systems languages.

3.2 Limit Artificial Intelligence System to
Propositional Logic

Propositional calculus (Boolean or sentential logic) is finitely
decidable (though the size of the finite decision process may be
impractically large), but rules that require predicate calculus are
not finitely decidable (and may therefore be undecidable).
Nevertheless, some rulebases which are written in syntax that
appears to involve predicate calculus, while in reality the rules
can be completely translated into Boolean polynomials; thus, the
appearance of needing predicate calculus may be illusory.

For example, a rule in one of our rulebases, used the phrase “all
phenomena”. However, in this case it meant merely a list of
phenomena covered by the rulebase and did not essentially
involve predicate logic. If your system is written in, or translated
into, Boolean expressions, then an upper bound on the number of
input conditions needed for exhaustive testing is 2 to the power of
the number of (Boolean) input variables. If this is too many for
practical testing (which includes not only the number of tests that
need to be constructed and carried out, but also includes the time
that we have to spend on checking and analyzing the results), then
consider intervening variables.

3.3 Intervening Variables in Reducing Testing
Summary variables can greatly reduce the number of test
conditions required for complete testing of a rule-based system. If
(A) a system has 40 variables and no intervening or summary
variables, then there are 240 = 1 099 511 627 776 (about a trillion)
conditions to test the system exhaustively. If (B) one devises four
intervening variables, each of which responds to l0 of the original
variables with a binary value, then there are only 4×210 + 24 = 4
128 conditions to test.

In most systems, exhaustive testing is infeasible, and one must
instead select the tests based on a variety of more careful
considerations, ranging from practical criteria, reflecting the time,
cost, and difficulty in performing the tests, through mathematical
and statistical criteria, regarding the sampling over the spaces of
possible input and output variables, to functional criteria,
corresponding to the importance of various system performance
requirements.

4 VALIDATION ANALYSES FOR
ARTIFICIAL INTELLIGENCE
SYSTEMS

Validation is the process of ensuring that a software system
satisfies the requirements of its users. Assuming that the
requirements stated in the problem specification are correct, and
then verification is part of validation concerned with establishing

formalized properties of the system [6]. In addition to verification,
validation also includes empirical evaluation techniques in which
experiments are performed on the system, the results of which are
analyzed carefully to determine whether the system is acceptable.

4.1 Component Testing for Artificial
Intelligence Systems

Most often, knowledge bases are tested only as black boxes, that
is, as an indivisible whole. However, there is potential for
component or module testing for these systems in certain
circumstances. One definite validation requirement for all
Artificial Intelligence systems is to test that the inference engine
satisfies the requirements specified in the system design model.
As described earlier, depending on the exact approach followed
by the developers, verification of the inference engine may be
accomplished either by formal methods or empirical testing.

In addition to performing testing of the inference engine
separately, it may be possible to test components of the
knowledge base independently, if the problem can be decomposed
in a suitable manner. It may be possible to test task knowledge by
providing simulated domain level knowledge. As a trivial
example, if the domain knowledge consists only of the rules p�q
and q�r, and we have a test case that says that, for input p, the
system should produce output「r, and then it is easy to show that
the knowledge base is inconsistent with this test case, and is
therefore unacceptable.

4.2 Obtaining a Test Suite
A serious difficulty in obtaining such a set is that the diversity of
situations in which an Artificial Intelligence system must perform
is such that a representative set of cases will likely be very large,
even when accounting for the existence of equivalence partitions
within the input domains (that is, test cases that should be treated
identically by the system).

The problem of creating a suite of test cases is exacerbated by the
fact that each test case is likely to be complex, because a typical
Artificial Intelligence system solves complex problems presented
as complex test cases. This means that, not only will it be difficult
and time-consuming to create or transcribe each case, but also it
may be difficult to specify what constitutes an acceptable output
for the case. Although we cannot avoid the necessity of testing,
we can seek to minimize the effort involved by minimizing the
number of test cases required.

Although random generation of test cases has proven very useful
in testing conventional software, the complexity of Artificial
Intelligence systems testing requires a more focused approach to
test case creation. The most practical method for creating a set of
test cases would seem to entail a combination of both structural
and functional approaches.

4.3 Judging System Acceptability
One repercussion of this fact is that it may be difficult to choose
an appropriate level of performance for the system to achieve in
order to be accepted. A second repercussion is that it may be
difficult to define a standard against which to judge the
acceptability of the system.

5 CONCLUSION

International Journal Of Computer Science And Applications Vol. 1, No. 3, December 2008
ISSN 0974-1003

212

Despite the exaggerated claims and grandiosity of some of their
developers, Artificial Intelligence systems have proven to be
useful in approaching and solving some problems. The challenge
is to build more correct and testable ones. A lot of what we
suggest is simply good modeling and good software engineering,

We consider models to be a fundamental part of improving
Artificial Intelligence system design, verification, validation, and
testing. A model is a framework for understanding and for doing
something. Through models we view individual facts, view or
work with the input, and evaluate whether overall the system is
performing well—or whether input, output, and intermediate
results were appropriate. We need to make the underlying models
used in an Artificial Intelligence system explicit, well formed, and
justified, and then we need to use these models to design the
Artificial Intelligence systems System correctly from the outset
and to form the basis of our testing decisions. Perhaps what we
need the most is a change in our attitude towards testing.

6 REFERENCES
[1] Garcez, A. S., Lamb, L. C., Broda, K. et al. 2004. Applying

Connectionist Modal Logics to Distributed Knowledge

Representation Problems. International Journal on Artificial
Intelligence Tools.

[2] Mili, A., Jiang, G., Cukic, B. 2004. Towards the Verification
and Validation of Online Learning Systems: General
Framework and Applications. Proc. 37th Hawaii
International Conference on System Sciences (HICSS-37
2004), Big Island, Hawaii.

[3] Bracchi, P., Cukic, B., Cortellessa, V. 2004. Performability
Modeling of Mobile Software Systems. Proc. 15th Int’l IEEE
Symposium on Software Reliability Engineering
(ISSRE’04), St. Malo, France.

[4] Barringer, H., Goldberg, A., Havelund, K. 2004. Rule-based
runtime verification. Proc. Fifth International Conference on
Verification, Model Checking and Abstract Interpretation
(VMCAI’04), Venice, Italy.

[5] Menzies, T., Pecheur, C. 2005. Verification and Validation
and Artificial Intelligence. Advances in Computing, Elsevier.

[6] Menzies T., Port, D., Chen, Z. et al. 2005. Validation
methods for calibrating software effort models. Proc. 27th
International Conference on Software Engineering, St Louis,
MO.

