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ABSTRACT 
In this work, non-linear control of CSTR for reversible reaction is 
carried out using Fuzzy Logic as design tool. The Model 
Reference Adaptive Control approach in used to design Fuzzy 
controller. The idea is to have a control system that will be able to 
achieve improvement in the level of conversion and to be able to 
track set point change and reject load disturbance. We use PID 
control scheme as benchmark to study the performance of the 
controller. The comparison shows that Model Reference Adaptive 
Fuzzy Controller performs better than PID controller in the 
extreme range of non-linearity. 
This paper represents a preliminary effort to design a simplified 
Model Reference Adaptive Fuzzy Control scheme for a class of 
non-linear process. Future works will involve further investigation 
of the effectiveness of thin approach for the real industrial 
chemical process.    

Categories and Subject Descriptors 
I.2.1 [Applications and Expert Systems]: Industrial automation.  

General Terms 
Design, Experimentation. 

Keywords 
Fuzzy Logic, Adaptive Control, Reference Model, PID 
Controller. 

1 INTRODUCTION 
While non-adaptive fuzzy control1 has proven its value in some 
applications, it is sometimes difficult to specify the rule base for 
some plants, or the need could arise to tune the rule-base 
parameters if the plant changes. This provides the motivation for 
adaptive fuzzy control, where the focus is on the automatic on-
line synthesis and tuning of fuzzy controller parameters (i.e., the 
use of on-line data to continually “learn” the fuzzy controller, 
which will ensure that the performance objectives are met). The 
first adaptive fuzzy controller called the linguistic self-organizing 
controller (SOC) was introduced in [1]; several applications of 

this method have been studied (see the references in [2]). More 
recently, the “fuzzy model reference-learning controller” 
(FMRLC) was introduced in [2]–[4], its extensions in [5], and 
both simulation and implementation studies [4]–[8] have shown 
this method to be quite successful. Many other adaptive fuzzy 
control techniques exist and the reader is referred to [9] - [11] for 
a more complete overview. 

The problem with the SOC and FMRLC is that while they appear 
to be practical heuristic approaches to adaptive fuzzy control 
there is no proof that these methods will result in a stable closed-
loop system (verification of stability is important, especially for 
safety-critical systems). Recently, however, several researchers 
have explored ideas from conventional adaptive and neural 
control to establish stability conditions for a variety of adaptive 
fuzzy control techniques [1]–[4] and neural control methods [3]. 
Generally, these techniques can be split into two categories: direct 
and indirect adaptive fuzzy control. In indirect adaptive fuzzy 
control, there is an identifier mechanism that produces a model of 
the plant, which is then used to specify the controller (i.e., we 
update the controller parameters indirectly by first estimating the 
model parameters). In direct adaptive control, a model of the plant 
is not estimated; instead, we directly tune the controller 
parameters using plant data. Regardless of the method chosen or 
whose approach one takes, the practical value of these adaptive 
controllers is questionable since  

1) There have been very few comparative analyses with 
conventional adaptive or non-adaptive nonlinear control methods; 

2) There seem to be no experimental studies to determine how 
well these techniques perform in implementation, especially 
relative to conventional adaptive or non-adaptive nonlinear 
control techniques. 

A complete assessment that would clarify how the above adaptive 
controllers would perform relative to all conventional methods 
and a wide variety of experimental settings is clearly beyond the 
scope of this or any single paper. Here, we use three case studies 
to compare the adaptive fuzzy controllers (both direct and 
indirect) in [1]–[3], to some of the more popular conventional 
linear and nonlinear methods. A case study we focus on is a 
CSTR process. We develop conventional PID and adaptive fuzzy 
controllers, and provide simulation results. 

2 NON-LINEAR CSTR PROCESS 
A CSTR (Continuous Stirred Tank Reactor) is a highly non-linear 
process. A schematic of the CSTR system is shown in Figure 1. A 
single irreversible, exothermic reaction is assumed to occur in the 
reactor. 
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Figure 1 CSTR Plant Model 

Table 1. Nominal CSTR Operating Conditions 
 

q = 100 l/min, 
product flow rate 

 

C =1 mol/l, input 
concentration 

 
T =350 K, input 
temperature 

 

T =350 K, 
temperature of coolant 

 
K1=1.44*1013 
Kl/min/mol, 

 

V =100 l , container 
volume 

 
E / R =104 K, 
activation energy 
 

K2= 0.01 / l , constant 
 

K3=700 l/min, 
constant 
 

K= 7.2 * 1010 min-1 , 
constant 

 
 
The process model consists of two non-linear ordinary differential 
equations [15] as follows. 
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where qc(t) is the coolant flow rate, T(t) is the temperature of 
solution and C(t) is the effluent concentration. The model 
parameters defined, and the nominal operating conditions are 
shown in table 1. The objective is to control C(t) by manipulating 

 qc(t) . Figure 2 is the locus of equilibrium distribution of input c q 
(t) versus output C(t) and T(t); the CSTR exhibits highly non-
linear dynamical behavior. Eigen value analysis shows that the 
stable equilibrium regime of the CSTR lies in  

 C(t) � (0, 0.13566) & qc(t) � (0, 110.8),  
which is shown in    figure 3. 

 
Figure 2 Non-linearity of CSTR 

 
Figure 3 Stable Equilibrium Area 

 

3 PID AND FUZZY LOGIC 
CONTROLLER 

3.1 PID Controller 
The three term proportional integral and derivative PID controller 
account for more than 95% of installed automatic feedback 
controller. PID controller gave optimal control for 1st order 
system without and delays. There are three classes of PID in this 
work; the class chosen has the generic form: 

� ��� )()()()( te
dt
dKdtteKteKtU DIp                  (3) 

The variable e(t) represents the tracking error, the difference 
between the desired value (r) and the actual output (y). PID 
controller will use this error signal. PID will take appropriate 
action according to the law and pass the signal (u) to the plant to 
adjust the appropriate manipulated variable. 

3.2 Fuzzy Logic Controller 
Fig. 1 shows a block diagram of a CSTR Process using a FLC. 
The FLC has two inputs speed error e( k) and change in speed 
error de(k) and one output Cref (k). 
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To obtain normalized inputs and output for fuzzy logic controller, 
the constant gain blocks are used as scaling factors �, �,� as 
shown in Fig. 4. 
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Figure 4 Scaling Factors 
The FLC consists of three stages: the fuzzification, rule execution, 
and defuzzification shown in figure 5. In the first stage, the crisp 
variables e(k) and de( k) are converted into fuzzy variables   E( k) 
and dE( k) using the triangular membership functions shown in 
Fig. 6.  

FLC

E

dE
Fuzzificaton

Rule
Base

Defuzzification
C ref

Inference Engine

Figure 5 Fuzzy Logic Controller Structure 
Each universe of discourse is divided into five fuzzy sets: NL 
(negative large), NS (negative small), ZE (zero), PS (positive 
small) and PL (positive large). Each fuzzy variable is a member 
of the subsets with a degree of membership varying between 0 
(non-member) and 1 (full-member). 

In the second stage of the FLC, the fuzzy variables E and dE are 
processed by an inference engine that executes a set of control 
rules contained in (5 � 5) rule bases. The control rules are 
formulated using the knowledge of the CSTR Behavior. Each rule 
is expressed in the form 

CisZTHENBisYANDAisxIFRule :1  

Different inference algorithms can be used to produce the fuzzy 
set values for the output fuzzy variable Cref. In this paper, the 
max-min inference algorithm is used, in which the membership 
degree is equal to the maximum of the product of E and dE 
membership degree. 

The inference engine output variable is converted into a crisp 
value cref in the defuzzification stage. Various defuzzification 
algorithms have been proposed in the literature. In this paper, the 
centroid defuzzification algorithm is used, in which the crisp 
value is calculated as the centre of gravity of the membership 
function. 

The definition of the spread of each partition, or conversely the 
width and symmetry of the membership functions, is generally a 
compromise between dynamic and steady state accuracy. Equally 
spaced partitions and consequently symmetrical triangles are a 
very reasonable choice. The universe of discourse is normalized 
over the interval [-1,1]. So, we need to multiply the controller 
input and output variables by adjusting gains in order to 
accommodate these variables into the normalized intervals [3,4]. 

 
Figure 6 Membership Function of the Controller 

4 MODEL REFERENCE ADAPTIVE 
FUZZY CONTROLLER 

Fuzzy control systems based on model reference adaptive control 
have been reported by a number of researchers. The principal 
components of this system are the reference model, a primary or 
direct fuzzy logic controller (FLC), and an adaptation mechanism. 
The reference model embodies the desired performance 
characteristics of the overall system. 

Typically, this is a first order or well-damped second order linear 
system although it could alternatively be nonlinear [4]. 

The direct fuzzy logic controller is implemented using a simple 
adaptive control based on the gradient algorithm method. The role 
of the adaptation mechanism is to adjust the characteristic of the 
FLC in response to the error em(t) between the outputs of 
reference model and plant, in order to minimize that error in some 
sense. The adaptation mechanism may be subdivided into an 
inverse plant model designed to give an indication of the required 
correction, �U(t) , to the output signal U(t) and an updating 
algorithm in order to affect that correction via the direct FLC 
[5,6]. 

The updating algorithm modifies the FLC characteristic such that 
its output U(t) is altered by the correction value �U(t) . The 
MRAFC is depicted in Fig. 7. It is presented as learning a more 
global control function with faster convergence. The adaptation is 
affected by adjusting the centre values of the output fuzzy sets 
[4,5,7]. 

In the proposed scheme, the error and change of error measured 
between the motor speed and the output of a reference model are 
applied to a fuzzy logic adaptation mechanism. The latter will 
force the system to behave like the model by modifying the 
knowledge base of the fuzzy controller or by adding an adaptation 
signal to the fuzzy controller output.  
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The internal structure of the MRAFC is identical to that of the 
direct FLC: the fuzzification, rule execution, and defuzzification.  

As in the case of FLC, FMRAC rules are formulated based on the 
knowledge of the drive behavior and common sense. 
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Figure 7 Model Reference Adaptive Fuzzy Controller 

5 SIMULATION RESULTS AND 
CONCLUSIONS 

Figure 8 shows response for both MRAFC and PID controller. For 
PID controller, the controller setting that gave the best 
performance was found to be Kc = 3.15, Ki = 0.4 and Kd = 8. The 
response is not without of overshooting, which is very high and 
small inverse response. For the case of MRAFC the overshoot is 
very small but in both cases, they brought the reaction almost into 
complete conversion. 

The next performance test involved a set point tracking problem 
the set point was allowed to change in random fashion. Figure 9 
shows the result obtained using the model reference model 
adaptive fuzzy control strategy. The system behavior shows 
perfect tracking with no overshoot although the system is 
somehow sluggish which may be accommodated for the system 
under consideration. The dotted line in fig 9 shows the 
performance of a PID controller. Overshoot is observed and 
settling time for the first set point is quite long. But for the  
subsequent set points PID response looks similar to MRAFC with 
small over shoot. The plots also show an unsymmetrical response 
of PID control for different set points, implying that the system 
behave nonlinearly for PID control. 

 

 
Figure 8 Response for CSTR using PID and MRAFC for 

given set point 
From the results obtained in our simulation we can see that the 
MRAFC was able to track set point change and reject the 
uncertainties resulting from external disturbances and plant model 
mismatches. The responses were somehow sluggish in the faces 
of external disturbances but give no oscillatory behaviors. For 

PID controller, the performance deteriorated for set point changes 
and under the influence of external disturbances. This reason for 
poor performance can be adduced because of high non-linearity of 
the CSTR. 

 
Figure 9 Response of PID and MRAFC for set point 

change 
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