
International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 43

Intermediary Module Incorporation Technique For
Verification (Tool Description)

Vaibhav Shrivastava
Motilal Nehru National Institute of Technology,

Allahabad, U.P. 211004, India +(91) 9935751724

vaibhav87s@gmail.com

Ankit Marwaha
Motilal Nehru National Institute of Technology,

Allahabad, U.P. 211004, India +(91) 9008477558

mailmarwa@gmail.com

ABSTRACT
With the advent of complex software model development,
emphasis has shifted to revision of an existing model instead of
building it from scratch. The visual model, for generation of
executable code, requires an intermediate representation that is
reconstructed during model revision. This leads to a processing
overhead when revisions increase manifold. Making incremental
modifications, directly to the intermediate representation of the
original model, can eliminate this drawback. Thus, time and space
needed to parse the model and extract the details for each revision
is saved.

In this paper, we implement a revision-incorporating technique of
a software design model into an existing version. Initially, the
Code Extractor parses the XML file representing the UML model,
and extracts the relevant information into a set of tables. A
Graphical Interface introduces revisions to the original model.
The Module Binder combines them with the original tables to
create a new set of tables for the revised model, eliminating the
need to parse the entire XML file again. Finally, Validation
module helps the designer verify the behavior of the revised
model. If satisfied, the designer can approve the model for the
code generation of software development.

The proposed technique is being implemented as a tool. It forms a
part of our semester project. Presently, we are using Visual
Paradigm for UML modeling, but it can be done using any other
platform. A user-friendly interface for including the revisions to
the model has been developed. Our tool can be used to select a
suitable revision from a set of revised models by helping the
designer to find variations from the desired behavior.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Reuse
models. D.2.4 [Software Engineering]: Software/Program
Verification – Model checking

1 INTRODUCTION
Over the recent years, systems were growing rapidly in
complexity and required more and more collaboration and a solid
durable design quality. Early modeling Methodologies provided a

way to cope with complexity, encourage collaboration and
improve design in all aspects of Software development.
Proliferation of various isolated modeling solutions and related
problems led to development of UML as a well established
standard.

1.1 Important Aspect
Relationships between the components of a system are grasped
more easily when the design is represented graphically using a
modeling language. Both the static and dynamic aspects of a
program can be represented using a UML model.

With the use of automated test suites one can verify the accuracy
of a model. A fully executable UML mode can be deployed to
multiple platforms using different technologies.

During the design stage there are many changes in the model. At
the final end we do receive an impeccable model which can be
used by the above software for verification. There is no facility
which would be useful in the preliminary stages.

1.2 Revision Problem
 Most of the current software developments require the developers
to incorporate new incremental features to existing models, rather
than engineering softwares from base. These new features are
modular in nature, so that the internal functioning of this new
module can be looked upon specifically without having to refer to
the existing combined remaining modules (residual model). This
module is in fact a component that interacts with the residual
model through interfaces. The modules possess the properties like
low coupling and high cohesion. This involves inclusion of
modules right from the design phase.

1.3 Usage
UML modeling tools generally support the generation of skeletal
implementation code either directly or by exporting models in a
standardized format, such as XMI, that can be used by third-party
tools. Tools for the generation of code from model descriptions
are valuable in helping developers maintain consistency between
a model and its implementation, which may involve a large
number of source files compared to size of the model.
Now when a module is added to the existing UML the UML may
be appended, but the entire UML model is transformed to an
XML file that has to be parsed again. As such, the previously
extracted information is not utilized and instead the steps are
repeated as if we create a structure each time from scratch. This is
an overhead which is a bane if the new model being incorporated
undergoes repetitive modifications, if there are flaws in the design
of the new module.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2008 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 44

We have developed a tool that would obtain only the relevant data
from the new module with the help of a user interface and fuse it
with the previously extracted data structure. The form based
interface facilitates the user to feed in necessary values that are
the specifications of the new module. The key features required to
combine this new module with the existing model are also input
through the interface such that, the module is combined at the
appropriate point/points with the existing model.

This eliminates parsing and uses the combined structure to test for
the validity of the module and its incorporation. The design could
be finalized if behavior and activity of the model is sound. These
modules may be implemented in different languages and may
execute on different hardware. In this paper, we explain the
proposed technique and working of the tool that has been
developed. For explanation we have referred to the usage of State
Diagrams throughout the paper.

2 PROPOSED TECHNIQUE
Various commercial platforms like Rational Rose and Visual
Paradigm support UML diagram modeling and also XMI
generation. The platforms generate a XML file which contains all
the data represented by the UML model and all details in concern.

For Example, if the UML is a State Diagram, the relevant
elements in the XML file would be States and the attributes would
be the name, id, preconditions, post-conditions

The outgoing and incoming transitions would be in sub-elements
to-transitions and from-transitions respectively of the element
state.

For different platforms the structure of the XML page shall be
different although basically the information stored will be the
same. The difference in the element and attribute names can be
easily understood from the DTDs.

The Code Extractor module parses the XML file. The
implemented module is specific to the UML tool due to the
platform dependence of the XML file as described above.
However, with minor changes, the module could be tailored for
any other UML tool.

The Code Extractor Module extracts the information form the
XML file and stores them in a set of dynamically declared tables.
Different UML diagrams have different elements which have
different attributes. Hence there is diagram specific information.

The new module to be affixed with this existing model is fed in
by the user through the User interface that has been provided for
direct fusing of the module with the extracted data of the model.
The specifications for the internal actions, transitions and states of
the new module are inserted by the user through the interface.
This includes all information about the states of the new module,
their properties and the transitions between these states. Along
with this information, transitions into or out off this new module
are fed in through a dialog box, which require the user to input the
pre-conditions and post-conditions. This signifies the states which
are the corresponding end in the existing model for these external
transitions from/to the module being appended. The user could
supply the exit post-conditions for outgoing transitions and the
entry pre-conditions for the incoming transitions (for this new
module) as described in detailed later when the User Interface

Discussion takes place. This graphical modular data represented
in the interface are interpreted by the module binder and fused
directly to the existing tabular structure created earlier.

The appended set of tables is the internal representation which
serves as the input for the validation module. This validation
module takes fresh scenarios as input along with the appended set
of tables and tracks down the behavior of the combined model
diagram.

Finally, Validation module helps the designer verify the behavior
of the revised model. The implementation of the functionality of
the model is totally based on methods which correspond to the
various events which occur. Hence, whenever there is a message
pass in the sequence diagram the corresponding event gets called,
updating the values of variables. Conditions regarding the states
and the changes in states and variables can be displayed to the
user, thus enabling him to see the complete flow of the program
from his object oriented design.

Figure 2-1. Modular Design of the Tool

The output displayed could be another UML 2.0 diagram that
tracks the behavioral aspect and depicts the User perspective
(Sequence, Activity and Use Case), skeletal code or even an
executable code (if this tabular structure is modified such that it
conforms to an input to a commercial tool for automatic code
generation).

3 IMPLEMENTATION
Though the concept can be used on any tool as stated earlier, we
have implemented the working particularly for Visual Paradigm.
The corresponding XML file created for the UML 2.0 Diagram is
parsed with the help of the JDOM parser [2]. The input is a state
diagram for our tool. The state diagram consists of States and
Transitions. Transitions would possess transition identification
number, name, from-state identification number and to-state
identification number. Thus a table tuple entry relates a unique
transition (represented by the transition id) with a starting state
(represented by a the state id in the column from-state) with a
finishing state (represented by the state id in the column to-state)
as shown in table 3-1.

Table 3-1. Transition Table Information

Transition id From-state To-state

International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 45

States would have data namely, Name, identification number, a
bit indicating whether or not state has sub-states, Entry, Exit and
Do Activity , each of which is categorized further into, Pre-
conditions, Body and Post-conditions. These are the properties of
the state. The State structure also contains a linked list of
Transition id and the to-state. This linked list is a list of all the
transition ids that leave the particular state along with the state id
(stored in the to-state) to which the transition proceeds as shown
in table 3-2. This structure has been developed in Java Eclipse
(version:3.1) platform[3]. The new incremented module is
coalesced by data supplied through a form based interface which
we have developed in Java.

Table 3-2. State Table Information

Stat
e Id

State
Name

Complex
Bit*

Entry Do
Activity

Exit

Transition id To-state id Link to next
node

It is the interpretation done by the Module Binder of the data fed
in through the interface that unifies it to the above existing
tabular structure and removes the parsing overhead (had the new
module been appended in the UML 2.0 tool itself). Using the
table of existing states, the Binder adds the various transitions and
includes new states of the new module to as specified by the user
to the former table.

The Validation Module takes some input cases, which could be
values of input variables and exhaustive scenarios that
demonstrate the effective behavior of the tabular Structure and
hence the Combined Module. The Validation process is visible to
the user, as a flow diagram of the state diagrams.

The semantics of UML statecharts allow for the possibility of
non-determinism in state transitions: Multiple transitions,
triggered by the same event, may be enabled for firing from the
same source state. This research does not handle such cases as we
assume the statecharts to be deterministic. Though non-
determinism may also result from concurrent state machines
interacting with one another, testing the interaction among
concurrent state machines belong to the realm of integration
testing and is thus out of the scope of this research.

3.1 Illustration using an example
The proposed idea and the working of the tool could be realized
more effectively using a real life state diagram as an example.
Figure 3.1-1 shows a state diagram for a simple ATM model.

3.2 Initial Model
State A : The initial state of the ATM machine (waiting for a card
input).

State B : Card entered .

State C : Cash Withdrawal.

State D : User authenticated.

Figure 3.1-1. A Simple ATM model

As the card is entered (an event), there is a transition from state A
to state B. Now state B has two self-initiated events. If the card is
found out to be invalid, the transition 2 takes place otherwise, if
the card is found out to be authentic, the transition 3 to state D
takes place. At state D the user can initiate one of the two possible
events. The logout event triggers the transition 6 or the withdraw
cash event triggers the transition 4. At state C, the user feeds in
the required amount and the corresponding cash is delivered to
the user. Of course, this model does not consider the details like
verifying the semantics such as if the withdrawal amount is
greater than the balance as the emphasis is on the model as an
example to visualize the tool advantages and not a fool proof
transcript of the working of a secure ATM.

This model is represented in the UML tool. The XML
representation of this model is parsed to obtain all the relevant
data in the tabular data structure as represented in tables 3-1 and
3-2.

Figure 3.1-2 A modified ATM model with Balance-Inquiry

facility

3.3 New Module
State A : The initial state of the ATM machine (waiting for a card
input).

State B : Card entered.

International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 46

State C : Cash Withdrawal.

State D : User authenticated.

New State E : Balance Inquiry.

Now, this working model has been implemented in an ATM
which is working in a way it is desired to. But supposing, a
situation arises to provide a facility to the user to inquire the
present balance in the account before withdrawing the cash. This
requires the model to be appended as shown in figure 3.1-2 which
is the original model combined with the Balance-Inquiry model.
In the logged in state (State D), an additional outgoing transition 7
which is triggered if the user wishes to inquire the balance. At
state E, the balance is displayed on the screen and the user can
trigger action 8 by pressing a “back” button which facilitates in a
transition back to the logged in state home.

Redrawing of the model would definitely take time and for larger
commercial models too, even appending the UML 2.0 diagram
possesses the parsing overhead. As explained in the proposed
technique, the solution is to directly add the data relevant to the
Balance-Inquiry module using form-based user interface. In the
Interface, we enter the State E and all its properties that would
have been entered had state been incorporated in the UML
diagram. These would include values needed in table 3-2.

3.4 Transition Incorporation
In order to combine this state (which is the module Balance-
Inquiry in this case) with the existing model, we use the theory
that a Transition exists from a state X to a state Y if the state id of
X is in the Entry pre-conditions of state Y and the state id of Y
lies in the Exit post-conditions of state X.. Thus the module may
be appended (which may have as many number of states as it
requires). But the state from which transition to this module takes
place must have a state of this module in its exit post-conditions
and so should be the correspondence for transitions leaving the
module. Thus for this Balance-Inquiry module, the Exit post
conditions of state E would be State D and the Entry Pre-
Conditions of the state E would be State D, as evident from the
diagram. Similarly data for State D is updated with it including
state E in its Entry Preconditions and exit post conditions.

3.5 Validation
The main implementation issue is as to how the state changes.
There is a current state variable which is initialized to the first
state. Based upon this initial value of a state, we scan every event
which occurs and check whether this corresponds to the exit
conditions of the current state, the entry conditions of some other
state. Also, if there exists a transition between these two states,
then it is evident that the event causes a state change. Thus one
can obtain the value of the new state. Hence as the model is being
executed one can actually realize whether the flow from one state
to another is conforming to the idea as presented by the user. Thus
the new model incorporating the module can be validated as per
the aim of the new model.

4 APPLICATIONS AND ADVANTAGES
The prime apparent advantage is that parsing is eliminated when a
new module is incorporated. This procedure is carried out if the

design model has not been confirmed by the developer. Thus it
provides a methodology for verification of a designed module that
is combined. This factor relies on the technique that previously
extracted data is utilized. For coarse-grained or module-level
concurrency, where modules are independent units of
computation that interact by few calls, show evident results,
though modules that interact greatly with the rest of the program
would demand the user to carefully link the interaction paths.

For an easier and faster implementation of changes, the developer
can actually test his changes which are to be incorporated with the
main model. A situation wherein the developer has to make all the
changes, only to find certain scenarios and left uncovered would
be undesirable, for he would have to again remodel the changes in
the main module. There can also be scenario wherein there are
several models for the same implementation and the developer
would like to test and compare how functionally correct and
complete each of the model is. We believe our tool will become
useful under these circumstances.

5 FUTURE DEVELOPMENT
There is immense scope for the development of this proposal.
Though the implementation has been accomplished for state
diagrams yet exhaustive exploitation of this technique could
widen the usage for all the remaining UML 2.0 diagrams. The
Structure made for the storage of extracted data could be modified
such that it serves as an input to an existing third party tool. Thus,
code could be generated without any XML file being developed.
The input which is an XML file can be modified which may lead
to a more suitable format for data extraction. With more
experience and effort further developments may lead to the
Interface that has been developed become instrumental as a
primary tool for UML modeling.

6 REFERENCES
[1] “Model Driven Architecture”, http://www.omg.org/mda
[2] “Processing XML with Java” Addison Wesley by Elliotte

Rusty Harold
[3] Eclipse Modeling Framework (EMF)

http://www.eclipse.org/modeling/emf/?project=emf
[4] I. A. Niaz and J. Tanaka , G. 1997 An Object-Oriented

Approach To Generate Java Code From UML Statecharts.
International Journal of Computer & Information Science.
Vol. 6, no.2 2005.

[5] ArgoUML - “Code Generation from Statecharts specified in
UML” Tiziana Allegrini.

[6] “An UML-XML-RDB Model Mapping Solution for
Facilitating Information Standardization and Sharing in
Construction Industry”I-Chen Wu and Shang-Hsien Hsieh

[7] “A Proposal for a Code Generator based on XML and Code
Templates” Andreas Rausch

[8] “Generic XMI-Based UML Model Transformations” Jernej
Kovse, Theo Härd

