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ABSTRACT 
This paper presents a new algorithm Parametric Multi Level 
Feedback Queue [PMLFQ]. The algorithm PMLFQ has been 
presented for solving the problems and minimizing the response 
time. In this algorithm, a parametric approach has been used for 
defining the optimized quantum of each queue and number of 
queues. 

Performance evaluation and summary of Scheduling Algorithms 
are done. The criteria for comparing scheduling algorithms, its 
background significance and features of parametric scheduler are 
detailed. Defining optimized quantum for the queue by PMLFQ 
function and designing of the parametric multilevel queue 
scheduler is expressed. Simulation and experimental results of 
parametric queue scheduler are discussed briefly. 

Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems]: Real-
time and embedded systems – Scheduler. 

D.4.1 [operating systems]: Process Management – Scheduling. 

D.4.7 [operating systems]: Organization and Design -- Real-time 
systems and embedded systems. 

General Terms 
Algorithms, computer science education, operating system, 
theory, documentation, performance, design and experimentation. 

Keywords 
PMLFQ, CPU scheduling, queue, round robin, FCFS, parametric, 
sjf, deadline, feedback, preemption, multilevel queue and process. 

1 INTRODUCTION 
Scheduling is the problem of assigning a set of processes (tasks) 
to a set of resources subject to a set of constraints. Examples of 
scheduling constraints include deadlines (i.e., job i must be 
completed by time T), resource capacities (i.e., limited memory 
space), precedence constraints on the order of tasks (i.e., 
sequencing of cooperating tasks according to their activities), and 
priorities on tasks (i.e., finish job P as soon as possible while 
meeting the other deadlines).  

Scheduling algorithm is one of the most important algorithms in 

operating systems, which plays a key role. These algorithms have 
been designed for optimized use of processes from processors. 

 Hard real-time systems – required to complete a critical 
task within a guaranteed number of times.  

o Scheduler must know how long each task will 
take to perform resource reservation  

 Soft real-time systems – requires the critical processes 
receive priority over less fortunate ones.  

o must have priority scheduling  

o "real-time" priorities must not degrade over 
time  

o dispatch latency must be low  

 Hard Real-Time Systems 

The hard real-time system guarantees that a critical task will be 
completed within a specified number of times. Each process and 
it’s allowed running time are presented to the system, and it 
determines about whether or not it is possible to complete the 
process in the showed number of times. To do this, the system 
looks at the sum of the time it takes to run each of the various 
operating system functions that the process uses and compares it 
to the allowed run time of the process. If it is possible to complete 
the task, then the system accepts it. Otherwise, it is deemed 
impossible and rejected by the system. 

The method described above is intended for the hard real-time 
system consisting of special-purpose software running on 
hardware that is dedicated to a critical process. These specialized 
systems lack the full functionality offered by modern computers 
and operating systems. 

Hard real-time guarantees cannot be made on systems with 
secondary storage or virtual memory. There is an unpredictable 
variance in the number of times it takes to execute a particular 
process on one of these systems. It may take significantly longer 
to run a process on a machine with virtual memory if the effective 
access time is high. 

Whenever a page fault occurs, the access time increases. This is 
shown by  

Effective access time = (1 – p) * ma + p * (page fault time)  [1] 

Where p is the probability of a page fault and ma is the memory 
access time [9]. 

 Soft Real-Time Systems 

The soft real-time system attempts to complete its tasks by their 
respective deadlines, but does not guarantee this will happen. 
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Critical processes receive higher priority over those that are not 
critical. In a time-sharing system with soft real-time capabilities, 
those processes that are real-time must be given the highest 
priority and this priority must not degrade over time. However, 
the priority of the processes that are not real-time in the system 
can decrease over time. This could cause longed, delays for these 
processes, sometimes even starvation. The dispatch latency in the 
soft real-time system must be as small as possible. A small 
switching time will provide more time for each process to run. 

Dispatch latency times can become very long in an operating 
system that requires a system call to complete or an I/O block to 
occur before performing a context switch. This is the case in the 
UNIX operating system [2]. One way to solve this issue is to 
make the system calls preemptible, by inserting preemption points 
in the system calls. A preemption point is a location in the code 
that is not critical; interrupting the process at this point will not 
harm its data. Whenever a preemption point is reached, the system 
checks to see if a higher-priority process needs to be run. If it 
does, control of the CPU is given to the process. Once it is 
finished, the CPU goes back to the initial preemption point and 
continues execution. 

Priority inversion occurs in the soft real-time system when one or 
more processes are using resources needed by a high-priority 
process. In this situation, the lower-priority processes are given a 
priority equal to the high-priority process until they are done using 
the desired resource or resources. Once the resource is released, 
each process is given its previous priority level. This technique is 
known as priority-inheritance protocol [6], and it prevents high-
priority processes from spending a lot of time waiting for 
resources to become available. 

1.1 Scheduling Policies 
CPU scheduling strategically allocates the CPU to a process based 
on a specified criterion. There are many different methods of 
selecting which process will be given control of the CPU. Each of 
these methods follows a different scheduling algorithm and has 
advantages and disadvantages. 

Simplifying Assumptions  

 One process per user  

 One thread per process  

 Processes are independent  

Researchers developed these algorithms in the 70’s when these 
assumptions were more realistic, and it is still an open problem, 
how to relax these assumptions 

1.2 Overview of Scheduling Algorithms 
Most operating systems today support multiple processes running 
at the same time. Since only one task could be performed at a 
time, by each CPU in the system, this force the operating system 
to make decisions about which process to run and when. The 
methods of scheduling implemented depend on the application at 
hand. In real-time embedded systems, the performance and 
predictability of the scheduler is of most importance. High 
performance makes the use of cheaper components possible and 
decreases the system response time. 

To maximize system performance it’s in the best interest of the 
operating system to make the CPU idle-time as low as possible. 

However, in the real-time environment, this problem becomes 
more complex, because it has to react very fast on external events, 
as well as uphold deadlines to prevent damage or personal 
injuries. The common list of scheduling algorithms is as follows. 

 FCFS: First Come First Served- Not fair, and average 
waiting time is poor.  

 Round Robin: Use a time slice and preemption to 
alternate jobs. Fair, but average waiting time is poor.  

 SJF: Shortest Job First- Not fair, but average waiting 
time is minimized presuming we can accurately predict 
the length of the next CPU burst. Starvation is possible.  

 Multilevel Queuing: Round robin on priority queue. An 
implementation (approximation) of SJF.  

 Lottery Scheduling: Jobs get, tickets and scheduler 
randomly picks winning ticket. Fairer with a low 
average waiting time, but less predictable.  

1.3 Criteria for Comparing Scheduling 
Algorithms 

 CPU Utilization The percentage of time that the CPU is 
busy. 

 Throughput The number of processes completing in a 
unit of time.  

 Turnaround time The length of time it takes to run a 
process from initialization to termination, including all 
the waiting time.  

 Waiting time The total number of times that a process 
is waiting in the ready queue.  

 Response time number of times it takes from when a 
request was submitted until the first response is 
produced, not output. 

1.4 Optimization Criteria in Real Cases… 
 Minimize the variance in the response time 

 Minimize the average waiting time 

 Minimize turnaround time 

 Maximize CPU utilization 

 Maximize throughput 

In a Schedulable real-time system: 

    Given  

      - m periodic events 

      - event i occurs within period Pi and requires Ci seconds 

then the load can only be handled if       





m

i

PiCi
1

1/        [2] 

The purpose of CPU scheduling is to maximize the utilization of 
the CPU. To do this, a process should be running always. For 
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example, if a process is waiting for some event to occur before it 
is able to continue execution, then it should not have control of 
the CPU. If it does, then the CPU is being wasted. 

1.5 Simple Process Model 
 The application is assumed to consist of a fixed set of 

processes 

 All processes are periodic, with known periods 

 The processes are completely independent of each other 

 All system's overheads, context-switching times and so 
on are ignored (i.e, assumed to have zero cost) 

 All processes have a deadline equal to their period (that 
is, each process must complete before it is next 
released) 

 All processes have a fixed worst-case execution time 

 

 
Figure 1. Simpler Processor Scheduling Model. 

1.6 Process Terminology and States 
A process is the execution of a program. It is often thought of as 
the unit of work in a computer system, because the operating 
system is constantly running processes.  

1.6.1 PROCESS CREATION 
Processes can be created by the kernel of the operating system or 
by the user. An example of a process created by the user is 
Microsoft Word. This process is only created once the user 
decides to launch Word. Processes that are created by the kernel 
take care of various system tasks. An existing process could also 
create a process, which is then referred to as the child process. 
The creating process is labeled the parent process. 

1.6.2 PROCESS STATE 
There are five possible states that a process may be in: new, 
running, waiting, ready, or terminated. These states are described 
below. 

 

Figure 2. Process terminology and states. 

 New – The process is being formed. 

 Running – Instructions from the process are being 
executed. 

 Waiting – The process is waiting for an event to happen 
before it can resume its execution. 

 Ready – The process is ready to be run, but is waiting 
for the processor. 

 Terminated – The process has completed its execution. 

The CPU scheduler, which is part of the operating system of a 
computer, manages the allocation of the CPU among processes. A 
process is said to be running in the running state if it is currently 
using the CPU. A process is said to be ready in the ready state if it 
could use the CPU if it is available. A process is said to be 
blocked in the waiting state if it is waiting for some event to 
happen, such as an I/O completion event, before it can proceed. 
Various events can cause a process to change state. For example, 
when the currently running process makes an I/O request, it will 
change from running state to waiting state. When its I/O request 
completes, an I/O interrupt is generated and then that process will 
change from waiting state to ready state. For a single CPU system, 
only one process may be running at a time, but several processes 
may be ready and several may be blocked. All ready processes are 
kept on a ready queue. All blocked processes are placed on an I/O 
queue for the requested I/O device.  

The scheduler uses a scheduling algorithm to decide which 
process from the ready queue to run when and for how long. Long 
(100ms) time slices make TLB [translation look-aside buffer] and 
cache state flushing infrequent, imposing minimal overhead on 
CPU-bound processes. The scheduler favors interactive processes 
by lowering the priority of processes as they consume CPU time 
and by preempting processes before their quanta expire if a higher 
priority sleeping process wakes up.  

2 THE BASIC CONCEPTUAL MODEL 
OF PARAMETRIC MULTILEVEL 
FEEDBACK QUEUE 

This algorithm works like the multilevel queue, but it is able to 
move a process from one queue to another. When a process uses 
too much CPU time, then it may be moved to a queue with a 
lower priority. 
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 Give newly runnable process a high priority and a very 
short time slice. If process uses up the time slice without 
blocking then decrease priority by 1 and double time 
slice for next time. 

 Go through the above example, where the initial values 
are 1ms and priority 100. 

 Keep a history of recent CPU usage for each process: if 
it is getting less than its share, boost priority. If it is 
getting more than its share, reduce priority. 

   
Figure 3. Parametric Multilevel-feedback-queue scheduler. 

 A process could move between the various queues; 
aging can be implemented this way 

 Multilevel-feedback-queue scheduler defined by the 
following guidelines; 

 number of queues 

 scheduling algorithms for each queue 

 method used to determine when to upgrade a 
process 

 method used to determine when to demote a 
process 

 method used to determine which queue a 
process will enter when that process need 
service 

 Overhead: number of contexts swaps. 

 Efficiency: utilization of CPU and devices. 

 Response time: how long it takes to do something. 

Example:- 

Three queues: 

 Q0– RR with time quantum 8 milliseconds 

 Q1– RR time quantum 16 milliseconds 

 Q2– FCFS 

Scheduling 

 A new job enters, queue Q0 which is served FCFS. 
When it gains CPU, job receives 8 milliseconds. If it 
does not finish in 8 milliseconds, job is moved to queue 
Q1. 

 At Q1 job is again served FCFS and receives 16 
additional milliseconds. If it still does not complete, it is 
preempted and moved to queue Q2. 

 
Figure 4. Example of a Parametric Multilevel-feedback-queue 

scheduler. 

In a multilevel queue-scheduling algorithm, jobs are permanently 
assigned to a queue on entry to the system. Jobs do not move 
between queues and this can create starvation if the jobs running 
are long duration jobs. We have employed multilevel feedback 
queue scheduling as shown in figure 4, since it allows a job to 
move between queues. The idea is to separate processes with 
different requirements and priorities. If a job use too much CPU 
time or is very data intensive, it will be moved to a higher-priority 
queue. Similarly, a job that wait too long in a lower-priority queue 
may be moved to a higher priority queue. 

 

Figure 5. N Independent process queues. 

P1,P2,P3,P4… Jobs, One queue per priority and one algorithm per 
queue. 

3  LITERATURE REVIEWS  

3.1 Different Available Scheduling 
Algorithms and Their Characteristics.. 
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There are several scheduling algorithms which assign processor to 
execute processes. There is no scheduling algorithm that work 
perfectly in all cases, so for a specific application, we should 
consider several parameters such as waiting time, total response 
time and utilization, in algorithm selection. For example non-
preemptive algorithms like FCFS and SJF are suitable when a 
high throughput system is needed as in batch-processing systems, 
and preemptive scheduling like MLQ and Round Robin (RR) are 
used to provide response time and fair dispatching of CPU time as 
in interactive systems. The simplest scheduling algorithm that is 
used in most of operating systems is FCFS, which is non-
preemptive minimum overhead algorithm. On the other hand, 
response time is not favored and no emphasis is put on 
throughput, damaging short and IO processes. The main 
advantage of this method is that no process starved. This 
algorithm is used in several operating systems because of its 
simple implementation and low overhead. FCFS is an unfair 
algorithm and results in weak average waiting time, while SRT 
[Shortest Remaining Time] and HRRN [highest response ratio 
next] provide good response time and high overhead. RR is a fair 
algorithm with weak average waiting time. Moreover, SJF is an 
unfair algorithm with the minimum average waiting time and 
needs prediction. The SRT algorithm damages long processes and 
is liable to starvation, but because of its prediction, it has better 
response time in comparison with other algorithms. It is not 
always possible to predict the execution time of processes and 
there is a possibility of failure in prediction, so SRT is used 
theoretically. 

In RR the overhead is low and there is no starvation, and this lead 
to the proper response time. In this algorithm, the time slice 
should be selected carefully in such a way that algorithm present 
an objective behavior to have suitable overhead. Feedback 
scheduling algorithm works better than feedback queues in 
decision making and preemption in a time period schedules the 
processes, and consequently MLFQ is an approximation of SJF. 
This algorithm makes the I/O bound processes better without 
emphasizing on throughput, response time and possibility of 
starvation. In this approach, the number of queues and the time 
quantum are chosen by default value. MLFQ is used in interactive 
and I/O bound systems, the time slice between the queues is 
generally %80 for foreground and %20 for background. The 
general scheduler in Unix based systems is based on MLFQ and 
some modern operating systems use MLFQ as well [9]. By taking 
a small quantum for layers, the response time of interactive 
processes is optimized; on the other hand by taking a larger 
quantum, the throughput of the system is increased. 

Generally in PMLFQ scheduling different queues with different 
priority are used. Each queue has its own scheduling algorithm. 
All processes are selected from the high priority queues to 
execute. This method may cause starvation, and generally the low 
priority queues should have a higher quantum. Because of using 
queues, this algorithm can be easily implemented to perform the 
operating systems scheduling. Since this algorithm is used in 
many cases, its response time should be optimized in comparison 
with other algorithms.  

4 SCOPE AND LIMITATIONS  

4.1 Research Findings and Gaps.. 
Some of the problems with MLFQ are  

 The number of priority levels of queues  

 Finding a suitable scheduling algorithm for each queue  

 Assigning time quantum for each queue  

 Assigning initial static priorities  

 Adjusting dynamic priorities  

 Favoring I/O bound processes  

 Differentiating foreground processes and background 
processes. 

The MLFQ approach is used in PMLFQ scheduling system in 
such a way that the response time is decreased and the 
functionality of the system is improved. The optimum numbers of 
queue and the quantum for each queue are found using a fault 
tolerant mechanism to achieve these goals. As the proposed 
mechanism considers these objectives simultaneously, they do not 
have any negative impacts on each others. In PMLFQ scheduling, 
the operating system can modify the number of queues and the 
quantum of each queue according to the existing processes. 

4.2 Motivation, Objectives and Goals 
In hard real-time systems, tasks have to be performed not only 
correctly, but also in a timely fashion. Otherwise, there might be 
severe consequences. In the hard real-time system, task 
scheduling algorithms ensure these tasks meet their deadlines. 
Scheduling involves allocating resources and time to task so that 
the system meets certain performance requirements [4]. 

Task scheduling in hard real-time systems can be static or 
dynamic. A static approach calculates schedules for tasks off-line 
and it requires the complete prior knowledge of tasks’ 
characteristics. A dynamic approach determines schedules for 
tasks on the fly and allows tasks to be dynamically invoked. 
Although, the static approach has a low run-time cost, they are 
inflexible and cannot adapt to a changing environment or to an 
environment whose behavior is not completely predictable. When 
new tasks are added to a static system, the schedule for the entire 
system must be recalculated which is expensive in terms of time 
and money. In contrast, dynamic approaches involve higher run-
time costs, but, because of the way they are designed, they are 
flexible and can easily adapt to change in the environment. 

A scheduling problem in the hard real-time system is defined by 
the model of the system, by the nature of the tasks to be scheduled 
and by the objectives of a scheduling algorithm. The systems can 
be uni-processor or multiprocessor, centralized or distributed. The 
system model is the arrangement of one or more nodes connected 
by a communication network. The hard real-time system task is 
characterized by its timing constraints, its precedence constraints 
and resource requirements. They can be periodic or non-periodic, 
pre-emptible or non-pre-emptible. The scheduling algorithm may 
be an optimal algorithm or an approximate or heuristic algorithm. 
A scheduling algorithm is said to be optimal if, for any set of 
tasks, it always produces a schedule, which satisfies the 
constraints of the tasks, whenever any other algorithm can do so. 
An approximate or heuristic algorithm is necessary whenever an 
optimal solution is difficult and computationally intractable. 

The PMLFQ algorithm model discussed in this paper assumes that 
each task:  

 Repeatedly executes at a known fixed rate (its "period").  
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 Must end before the beginning of its next period (its 
"deadline").  

 Does not need to synchronize with others in order to 
execute.  

 Can be interrupted at any point in time and replaced by 
another task in the CPU.  

 Does not suspend voluntarily.  

 Has zero preemption cost (task-switch times and 
scheduling-algorithm execution load are neglected).  

 Is ready while its assigned processing time is not 
exhausted. After running out of execution units, the task 
blocks until its next period. 

5 OPEN PROBLEMS: THE RESEARCH 
PLAN 

5.1 Problem Statement 
The aim of this research is to study the policy mechanisms of 
different real-time schedulers in embedded systems domain and 
evaluation of performance of these mechanisms. In addition, to 
arrive at a common solution to simulate a parametric scheduling 
policy. 

5.2 Research Methodology 
In a multi-task system, several processes are kept in the main 
memory and processor is kept active to run a process while the 
others are waiting. The key to Multi-Programming is scheduling.  

  

Figure 6. Priority Levels of Parametric Multilevel-feedback-
queue scheduler. 

The basic idea of PMLFQ is to organize jobs into a set of queues. 
Each job is processed for 2i time units if in queue Qi, before being 
promoted to queue Qi+1 if not completed. At any time, the 
machines process jobs in the lowest queues, in each queue giving 
priority to jobs at the front. While this algorithm turn out to be 
very effective in practice, it behaves very poorly with respect to a 
worst-case analysis, as explained below. 

A good rule of thumb for flow time minimization is given by the 
Shortest Remaining Processing Time [SRPT] first rule. SRPT 
prescribes the preemption of a job on execution when a job with 
shorter remaining processing time is released. SRPT is indeed an 
optimal algorithm for a single machine [4] and provides the best 
known approximation for parallel machines [7]. However, a 
nonclairvoyant scheduling algorithm cannot stick to the SRPT 

rule since it has no knowledge of the processing time of the jobs 
before they are completed. As to MLF, it behaves on some 
instances very differently from the SRPT rule in that it may 
preempt jobs in a high queue that are nearly completed to process 
newly released jobs with large processing time in lower queues. 
This may force jobs with small remaining processing time to 
spend a long time in the system while other long jobs are 
processed. It has actually been shown that no deterministic 
nonclairvoyant algorithm can be competitive at all against a worst 
case adversary [9]. In order to circumvent these difficulties, a 
randomized version of MLF, called PMLFQ, was proposed for a 
single machine.  

Here we are concerned with the work on short time scheduling 
which is the analysis of processes existing at the main memory to 
be executed by the processor. The goal of this work is allocating 
time in a way that one or some systematic behavior is optimized. 
Many criterions have been mentioned for evaluating scheduling in 
different research papers, that among them we can refer to two 
important criteria:  

1]- from the viewpoint of user, 

2]- from the viewpoint of system. 

Each of these two categories has many criteria to be discussed. In 
time-sharing, we try to reduce the response time variation because 
the goal of some operating systems is providing all users’ services 
are in a suitable way and minimizing the response time for users. 
As it is known, Multi layer Queue (MLQ) scheduling is designed 
from some prepared queues and the respective processor of each 
queue, MLFQ scheduling acts the same as MLQ and process can 
move dynamically in different queues. So processes that need a 
large number of CPU times are sent to the lower queues and 
process requiring I/O bound or related to interactive process are 
sent to queue with higher priority of response. PMLFQ scheduling 
algorithm is focused on total time, response time and application 
of priority, but it is tried not to apply the negative influences over 
the mentioned criteria. Our main jobs in this research paper are 
optimizing response time of MLFQ by using a parametric 
approach [9]. The MLFQ scheduling organizes the queues to 
minimize the queuing delay and optimize the queuing 
environment efficiency.  

5.3 Background Significance and Features 
of Parametric Scheduler 

The scheduler is the most important part of any kernel. It 
determines whether to run a new task. If so, it suspends or stops 
the current task and resumes or starts the new task. The parametric 
scheduler is a preemptive scheduler. It runs the longest-waiting 
task at the highest occupied priority level. 

 The PMLFQ scheduler employs a multi-level feedback 
queue in which processes with equal priority reside on 
the same run-queue. The scheduler runs processes 
round-robin from the highest priority non-empty run-
queue.  

 The scheduler prevents starvation by periodically 
raising the priority of processes that have not recently 
run.  

 PMLFQ scheduler also employs higher priorities for 
processes holding kernel resources. These kernel 
priorities cause processes to release high-demand kernel 
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resources quickly, reducing the contention for these 
resources. 

5.3.1 LAYERED READY QUEUE   
PMLFQ is unique in having a layered ready queue. The ready 
queue is where ready-to-run tasks are enqueued. Nearly all 
kernels, other than PMLFQ, utilize a single, ordered ready queue. 
To enqueue a new task requires searching from the beginning of 
the queue until the last enqueued task, of equal priority, is found. 
Then the new task is enqueued at that point. Obviously, if there 
are many ready tasks, this could take a long time.  

  
Figure 7. Layered ready queue. 

For PMLFQ, we observed that since PMLFQ tasks are permitted 
to share priority levels (which is not true for some kernels) the 
typical embedded system needs no more than 5-10 priority levels 
[3]. (How finely can you slice and dice the relative importance of 
each task?) Hence, why not have a separate queue for each 
priority level? This is how the PMLFQ ready queue is 
implemented. Each level is headed by a queue control block [qcb]. 
The qcb's are contiguous in memory and in order by priority. 
Hence enqueueing a task is but a two-step process: (1) index to 
the correct qcb, based upon the priority of the new task, and (2) 
follow the backward link of the qcb to the end of the queue and 
link in the task. This fast, two-step process takes the same amount 
of time regardless of how many tasks are in the ready queue.  

5.4 Designing the Parametric Multilevel 
Queue Scheduler 

In PMLFQ, we start with indefinite numbers of queues initially. 
An initial value of quantum is used for each queue. When a queue 
is being analyzed, its quantum value is defined by I*q, where q is 
the initial value of quantum and I is the number of queues being 
considered [5]. For defining the numbers of layer and quantum of 
each layer is described in [2]. When the number of required 
queues and the average response time are specified based on the 
initial quantum of each layer, the quantum of queues should be 
modified in such way that the average response time of the 
processes are minimized [7]. 

According to the changes in the quantum of each queue, the 
movement of the processes to the lower queues is changed. So the 
processing time of the processes in lower layers is changed and as 
a result the quantum of lower layers affects the average response 
time. The optimized quantum has not been defined for lower 
queues and the average response time is related to the 
functionality of the whole system. Consequently the relation of 

the average response time and the quantum of a specified queue 
are not easily formulated [6].  

To find the effect of the quantum changes, a queue should be 
selected and its quantum has been changed in such a way that the 
minimum number of processes has been moved to the lower 
queues [1]. 

Now, suppose that we have n queues in the default mode. We 
begin to change the quantum of layer n, Later when the last queue 
is selected and its quantum is increased, there is no other queue to 
be eliminated. If the quantum of this queue is reduced a queue 
will be added. In this case we repeat this procedure for the newly 
added layer. After updating the quantum of the last queue, we 
continue with the previous queue, i.e. n-1, and change the 
quantum of it. The optimized average response time is specified 
by changing the queue n-1.  

In this step, since there is a queue that is lower than the queue is 
being studied, and due to the changes made on the processes of 
the last queue after updating n-1, the optimized quantum of the 
last queue should be redefined [8]. Generally, when the optimized 
quantum of each layer is found, the quantum of lower levels 
should be updated. Finally, the best average response time can be 
calculated using the optimized quantum of each layer. 

 
Figure 8. Defining optimized quantum for the queue by 

PMLFQ function. 

Figure 8, shows a schematic view of the function to find the 
optimized quantum of the queue I, and the way in which the 
quantum is fed and also how to limit the number of queues. When 
the new average response time is found, it is compared with the 
former one. If it is less than the previous one, the new value is 
selected as the input of next stage to optimize the average 
response time. If the new value of the average response time is 
grater than the previous one, it means that the optimized average 
response time has been found. 

It should be guaranteed that the calculated quantum is selected as 
the quantum of the specified queue. If the quantum of the other 
queues is changed, we should find their optimized quantum again. 
The pseudo code of the algorithm has been shown below. 

5.5 PMLFQ Algorithm: 
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1- Produce arrival time and service time for n process randomly 
using distribution function. 

2- Get average response time, waiting time and maximum 
required layer in first stage and set the power quantum for each 
layer. 

3- For each layer (i=n down to 1) update the value of queue 
quantum according to the maximum number of layers and average 
response time. 

3.1- Find the optimum value of queue according to other 
queue quantum and the average response time that is 
found in the previous stages. 

3.2- For each layer (j=i+1 to n) repeat the step 3.2, 
consider the changes in other queue and update the 
quantum. 

5.6 Code Snippet for Scheduler 
#include"scheduler_Parametric_queue.cpp" 

struct priority 

{  

 int pid; 

 int value; 

 struct priority *next; 

}; 

class parametric_triple_queue : public scheduler 

{   

          priority *pri_first,*pri_temp; 

          priority *pri_second,*pri_temp_second; 

          priority *pri_third,*pri_temp_third; 

          int high_quantum,medium_quantum,low_quantum; 

          public: 

            int set_values (int,int,int,int); 

            void set_quantum (int); 

            int compute (); 

            void destroy (); 

}; 

Figure. 9. Basic functions of PMLFQ scheduler. 

The objective is to obtain a timeline of the execution and to show 
if tasks meet their deadlines or not. Tasks are assumed to be hard 
real-time, preemptive, periodic, with deadline equal to the next 
instance's arrival time and independent (they do not need to 
synchronize with others in order to execute). They also do not 
suspend its execution voluntarily. All tasks start execution at the 
same time in the simulation.  

void main( int argc, char *argv[]) 

{  

    node n;  

    task_t *task, *new; 

  init( argc, argv); 

  printf( "\nSelected Scheduling Algorithm: %s,\n", labels[ alg]); 

  (sched_alg_init)(); 

  /* select which task to run next */ 

  for( sys_time=0; 

      (merit_list->header->forward[0]!=NIL || request_list-> 

          header->forward[0]!=NIL) &&  sys_time <= max_time; 

      sys_time++){ 

            /* and if current task emptied its allocated time... */ 

            if( current!= idle_task  &&  -- current->remaining == 0){ 

             current->state=DEAD; 

             current->cycles++; 

             delete_task( deadline_list, current->deadline, current); 

             current= idle_task; 

          } 

          /* Look out for deadline failures */ 

        while(  key_of( n=first_node_of( deadline_list)) <= 
sys_time){ 

              if( (task= n->v)->state != DEAD){ 

                  printf( "At %d: task %c (\"%s\"),  

                                   instance %d, Deadline Failure%s\n", 

                      sys_time, task->sys_id, task->name, 

                                          task->instance, bell); 

              } 

              delete( deadline_list, n->key); 

          } 

          /* if it is time to launch a task... */ 

        while(  key_of( n=first_node_of( request_list)) <= 
sys_time){ 

              task_init( (task= n->v) ); 

              delete( request_list, n->key); 

              insert_task( deadline_list, task->deadline,task); 

              insert_task(  request_list, task->deadline, task); 

          } 

          new = (sched_alg)(); 

          /* swap and register who's using the processor */ 

          if( current!=new){ 

              context_switches++; 

              current->state=READY; 
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              current=new; 

              current->state=RUNNING; 

          } 

          timeline.history[ sys_time]= current->sys_id; 

          #ifdef DEBUG 

          printf( "%d: %s\n", sys_time, timeline.history); 

          #endif 

  } 

} 

Figure 10. Simulation of the execution of a task set in a 
multitasking environment by scheduler. 

6 EVALUATION AND RESULTS 

6.1 Simulation and Experimental Results of 
Parametric Queue Scheduler 

We define the processor utilization factor to be the fraction of 
processor time spent in the execution of the task set. In other 
words, the utilization factor is equal to one minus the fraction of 
idle processor time. Since Ci / Ti is the fraction of processor time 
spent in executing task Ti, for m tasks, the utilization factor U is: 

       [3] 

In PMLFQ scheduling there is a time threshold and a job 
threshold. If the number of jobs submitted from the particular user 
increases beyond the job threshold then the priority of the jobs 
submitted above the threshold number is decreased and jobs are 
migrated to a lower priority queue. In other words, with an 
increasing number of jobs, the priority of jobs from a particular 
user start to decrease. Moreover, a time threshold is included to 
reduce the aging affect. With the passage of time, the priority of 
jobs in the lower priority queues is increased so that it can also 
have a chance of being executed after a certain wait time. In other 
words, the more time a job has to wait the more its priority 
continues to increase. This is illustrated in figure 11. 

 

Figure 11. Priority with Time and Job Frequency. 

 
Figure 12. Simulation of parametric queue scheduler. 

Since the process arrival time is randomly distributed, we used 
discrete event technique simulation. So the system state has been 
changed when an event occurred during the simulation time. At 
first, we sort the processes by their arrival time and then find the 
first process to handle and provide its service. The PMLFQ 
average response time is better by 10% than the other scheduling 
algorithms [10]. 

7 CONCLUDING REMARKS  
 As tasks interact, integrated resource scheduling is also 

necessary. Algorithms exist that support special cases, 
in which decisions deal with imprecise results, task-
completion value, and so on. However, no algorithm is 
good for all cases. 

 Real-time scheduling may seem unnecessary, but as the 
project's complexity and size increase, it's the only way 
to guarantee proper system behavior. It is certainly more 
predictable than ad hoc techniques.  

 Since Number of the queues and quantum of each queue 
affect the response time directly. We continually review 
the PMLFQ algorithm for solving these problems and 
minimizing the response time and waiting time. 

 The PMLFQ is aimed to present an intelligent algorithm 
to optimize both the average response time and the 
waiting time. When the response and waiting time 
optimization is aimed, the PMLFQ shows a good 
performance.  

 We tried to decrease the overhead of the system, 
However we have a little overhead to be calculated 
and compared with the response time. With more 
researches it can avoid starvation in PMLFQ. This 
algorithm could also be used on distributed 
system, in an effective way that the research in this 
field is still being continued. 
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