
International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 99

A Simplistic Study of Scheduler for Real-Time and
Embedded System Domain

M.V. Panduranga Rao
Research Scholar, NITK, Surathkal Mangalore, India

+919844002757

raomvp@yahoo.com

K.C. Shet
Professor, NITK, Surathkal Mangalore, India

+919845237101

 kcshet@rediffmail.com

ABSTRACT
This paper presents a new algorithm Parametric Multi Level
Feedback Queue [PMLFQ]. The algorithm PMLFQ has been
presented for solving the problems and minimizing the response
time. In this algorithm, a parametric approach has been used for
defining the optimized quantum of each queue and number of
queues.

Performance evaluation and summary of Scheduling Algorithms
are done. The criteria for comparing scheduling algorithms, its
background significance and features of parametric scheduler are
detailed. Defining optimized quantum for the queue by PMLFQ
function and designing of the parametric multilevel queue
scheduler is expressed. Simulation and experimental results of
parametric queue scheduler are discussed briefly.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-
time and embedded systems – Scheduler.

D.4.1 [operating systems]: Process Management – Scheduling.

D.4.7 [operating systems]: Organization and Design -- Real-time
systems and embedded systems.

General Terms
Algorithms, computer science education, operating system,
theory, documentation, performance, design and experimentation.

Keywords
PMLFQ, CPU scheduling, queue, round robin, FCFS, parametric,
sjf, deadline, feedback, preemption, multilevel queue and process.

1 INTRODUCTION
Scheduling is the problem of assigning a set of processes (tasks)
to a set of resources subject to a set of constraints. Examples of
scheduling constraints include deadlines (i.e., job i must be
completed by time T), resource capacities (i.e., limited memory
space), precedence constraints on the order of tasks (i.e.,
sequencing of cooperating tasks according to their activities), and
priorities on tasks (i.e., finish job P as soon as possible while
meeting the other deadlines).

Scheduling algorithm is one of the most important algorithms in

operating systems, which plays a key role. These algorithms have
been designed for optimized use of processes from processors.

 Hard real-time systems – required to complete a critical
task within a guaranteed number of times.

o Scheduler must know how long each task will
take to perform resource reservation

 Soft real-time systems – requires the critical processes
receive priority over less fortunate ones.

o must have priority scheduling

o "real-time" priorities must not degrade over
time

o dispatch latency must be low

 Hard Real-Time Systems

The hard real-time system guarantees that a critical task will be
completed within a specified number of times. Each process and
it’s allowed running time are presented to the system, and it
determines about whether or not it is possible to complete the
process in the showed number of times. To do this, the system
looks at the sum of the time it takes to run each of the various
operating system functions that the process uses and compares it
to the allowed run time of the process. If it is possible to complete
the task, then the system accepts it. Otherwise, it is deemed
impossible and rejected by the system.

The method described above is intended for the hard real-time
system consisting of special-purpose software running on
hardware that is dedicated to a critical process. These specialized
systems lack the full functionality offered by modern computers
and operating systems.

Hard real-time guarantees cannot be made on systems with
secondary storage or virtual memory. There is an unpredictable
variance in the number of times it takes to execute a particular
process on one of these systems. It may take significantly longer
to run a process on a machine with virtual memory if the effective
access time is high.

Whenever a page fault occurs, the access time increases. This is
shown by

Effective access time = (1 – p) * ma + p * (page fault time) [1]

Where p is the probability of a page fault and ma is the memory
access time [9].

 Soft Real-Time Systems

The soft real-time system attempts to complete its tasks by their
respective deadlines, but does not guarantee this will happen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

© Copyright 2009 Research Publications, Chikhli, India

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 100

Critical processes receive higher priority over those that are not
critical. In a time-sharing system with soft real-time capabilities,
those processes that are real-time must be given the highest
priority and this priority must not degrade over time. However,
the priority of the processes that are not real-time in the system
can decrease over time. This could cause longed, delays for these
processes, sometimes even starvation. The dispatch latency in the
soft real-time system must be as small as possible. A small
switching time will provide more time for each process to run.

Dispatch latency times can become very long in an operating
system that requires a system call to complete or an I/O block to
occur before performing a context switch. This is the case in the
UNIX operating system [2]. One way to solve this issue is to
make the system calls preemptible, by inserting preemption points
in the system calls. A preemption point is a location in the code
that is not critical; interrupting the process at this point will not
harm its data. Whenever a preemption point is reached, the system
checks to see if a higher-priority process needs to be run. If it
does, control of the CPU is given to the process. Once it is
finished, the CPU goes back to the initial preemption point and
continues execution.

Priority inversion occurs in the soft real-time system when one or
more processes are using resources needed by a high-priority
process. In this situation, the lower-priority processes are given a
priority equal to the high-priority process until they are done using
the desired resource or resources. Once the resource is released,
each process is given its previous priority level. This technique is
known as priority-inheritance protocol [6], and it prevents high-
priority processes from spending a lot of time waiting for
resources to become available.

1.1 Scheduling Policies
CPU scheduling strategically allocates the CPU to a process based
on a specified criterion. There are many different methods of
selecting which process will be given control of the CPU. Each of
these methods follows a different scheduling algorithm and has
advantages and disadvantages.

Simplifying Assumptions

 One process per user

 One thread per process

 Processes are independent

Researchers developed these algorithms in the 70’s when these
assumptions were more realistic, and it is still an open problem,
how to relax these assumptions

1.2 Overview of Scheduling Algorithms
Most operating systems today support multiple processes running
at the same time. Since only one task could be performed at a
time, by each CPU in the system, this force the operating system
to make decisions about which process to run and when. The
methods of scheduling implemented depend on the application at
hand. In real-time embedded systems, the performance and
predictability of the scheduler is of most importance. High
performance makes the use of cheaper components possible and
decreases the system response time.

To maximize system performance it’s in the best interest of the
operating system to make the CPU idle-time as low as possible.

However, in the real-time environment, this problem becomes
more complex, because it has to react very fast on external events,
as well as uphold deadlines to prevent damage or personal
injuries. The common list of scheduling algorithms is as follows.

 FCFS: First Come First Served- Not fair, and average
waiting time is poor.

 Round Robin: Use a time slice and preemption to
alternate jobs. Fair, but average waiting time is poor.

 SJF: Shortest Job First- Not fair, but average waiting
time is minimized presuming we can accurately predict
the length of the next CPU burst. Starvation is possible.

 Multilevel Queuing: Round robin on priority queue. An
implementation (approximation) of SJF.

 Lottery Scheduling: Jobs get, tickets and scheduler
randomly picks winning ticket. Fairer with a low
average waiting time, but less predictable.

1.3 Criteria for Comparing Scheduling
Algorithms

 CPU Utilization The percentage of time that the CPU is
busy.

 Throughput The number of processes completing in a
unit of time.

 Turnaround time The length of time it takes to run a
process from initialization to termination, including all
the waiting time.

 Waiting time The total number of times that a process
is waiting in the ready queue.

 Response time number of times it takes from when a
request was submitted until the first response is
produced, not output.

1.4 Optimization Criteria in Real Cases…
 Minimize the variance in the response time

 Minimize the average waiting time

 Minimize turnaround time

 Maximize CPU utilization

 Maximize throughput

In a Schedulable real-time system:

 Given

 - m periodic events

 - event i occurs within period Pi and requires Ci seconds

then the load can only be handled if

m

i

PiCi
1

1/ [2]

The purpose of CPU scheduling is to maximize the utilization of
the CPU. To do this, a process should be running always. For

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 101

example, if a process is waiting for some event to occur before it
is able to continue execution, then it should not have control of
the CPU. If it does, then the CPU is being wasted.

1.5 Simple Process Model
 The application is assumed to consist of a fixed set of

processes

 All processes are periodic, with known periods

 The processes are completely independent of each other

 All system's overheads, context-switching times and so
on are ignored (i.e, assumed to have zero cost)

 All processes have a deadline equal to their period (that
is, each process must complete before it is next
released)

 All processes have a fixed worst-case execution time

Figure 1. Simpler Processor Scheduling Model.

1.6 Process Terminology and States
A process is the execution of a program. It is often thought of as
the unit of work in a computer system, because the operating
system is constantly running processes.

1.6.1 PROCESS CREATION
Processes can be created by the kernel of the operating system or
by the user. An example of a process created by the user is
Microsoft Word. This process is only created once the user
decides to launch Word. Processes that are created by the kernel
take care of various system tasks. An existing process could also
create a process, which is then referred to as the child process.
The creating process is labeled the parent process.

1.6.2 PROCESS STATE
There are five possible states that a process may be in: new,
running, waiting, ready, or terminated. These states are described
below.

Figure 2. Process terminology and states.

 New – The process is being formed.

 Running – Instructions from the process are being
executed.

 Waiting – The process is waiting for an event to happen
before it can resume its execution.

 Ready – The process is ready to be run, but is waiting
for the processor.

 Terminated – The process has completed its execution.

The CPU scheduler, which is part of the operating system of a
computer, manages the allocation of the CPU among processes. A
process is said to be running in the running state if it is currently
using the CPU. A process is said to be ready in the ready state if it
could use the CPU if it is available. A process is said to be
blocked in the waiting state if it is waiting for some event to
happen, such as an I/O completion event, before it can proceed.
Various events can cause a process to change state. For example,
when the currently running process makes an I/O request, it will
change from running state to waiting state. When its I/O request
completes, an I/O interrupt is generated and then that process will
change from waiting state to ready state. For a single CPU system,
only one process may be running at a time, but several processes
may be ready and several may be blocked. All ready processes are
kept on a ready queue. All blocked processes are placed on an I/O
queue for the requested I/O device.

The scheduler uses a scheduling algorithm to decide which
process from the ready queue to run when and for how long. Long
(100ms) time slices make TLB [translation look-aside buffer] and
cache state flushing infrequent, imposing minimal overhead on
CPU-bound processes. The scheduler favors interactive processes
by lowering the priority of processes as they consume CPU time
and by preempting processes before their quanta expire if a higher
priority sleeping process wakes up.

2 THE BASIC CONCEPTUAL MODEL
OF PARAMETRIC MULTILEVEL
FEEDBACK QUEUE

This algorithm works like the multilevel queue, but it is able to
move a process from one queue to another. When a process uses
too much CPU time, then it may be moved to a queue with a
lower priority.

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 102

 Give newly runnable process a high priority and a very
short time slice. If process uses up the time slice without
blocking then decrease priority by 1 and double time
slice for next time.

 Go through the above example, where the initial values
are 1ms and priority 100.

 Keep a history of recent CPU usage for each process: if
it is getting less than its share, boost priority. If it is
getting more than its share, reduce priority.

Figure 3. Parametric Multilevel-feedback-queue scheduler.

 A process could move between the various queues;
aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the
following guidelines;

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a
process

 method used to determine when to demote a
process

 method used to determine which queue a
process will enter when that process need
service

 Overhead: number of contexts swaps.

 Efficiency: utilization of CPU and devices.

 Response time: how long it takes to do something.

Example:-

Three queues:

 Q0– RR with time quantum 8 milliseconds

 Q1– RR time quantum 16 milliseconds

 Q2– FCFS

Scheduling

 A new job enters, queue Q0 which is served FCFS.
When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to queue
Q1.

 At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it is
preempted and moved to queue Q2.

Figure 4. Example of a Parametric Multilevel-feedback-queue

scheduler.

In a multilevel queue-scheduling algorithm, jobs are permanently
assigned to a queue on entry to the system. Jobs do not move
between queues and this can create starvation if the jobs running
are long duration jobs. We have employed multilevel feedback
queue scheduling as shown in figure 4, since it allows a job to
move between queues. The idea is to separate processes with
different requirements and priorities. If a job use too much CPU
time or is very data intensive, it will be moved to a higher-priority
queue. Similarly, a job that wait too long in a lower-priority queue
may be moved to a higher priority queue.

Figure 5. N Independent process queues.

P1,P2,P3,P4… Jobs, One queue per priority and one algorithm per
queue.

3 LITERATURE REVIEWS

3.1 Different Available Scheduling
Algorithms and Their Characteristics..

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 103

There are several scheduling algorithms which assign processor to
execute processes. There is no scheduling algorithm that work
perfectly in all cases, so for a specific application, we should
consider several parameters such as waiting time, total response
time and utilization, in algorithm selection. For example non-
preemptive algorithms like FCFS and SJF are suitable when a
high throughput system is needed as in batch-processing systems,
and preemptive scheduling like MLQ and Round Robin (RR) are
used to provide response time and fair dispatching of CPU time as
in interactive systems. The simplest scheduling algorithm that is
used in most of operating systems is FCFS, which is non-
preemptive minimum overhead algorithm. On the other hand,
response time is not favored and no emphasis is put on
throughput, damaging short and IO processes. The main
advantage of this method is that no process starved. This
algorithm is used in several operating systems because of its
simple implementation and low overhead. FCFS is an unfair
algorithm and results in weak average waiting time, while SRT
[Shortest Remaining Time] and HRRN [highest response ratio
next] provide good response time and high overhead. RR is a fair
algorithm with weak average waiting time. Moreover, SJF is an
unfair algorithm with the minimum average waiting time and
needs prediction. The SRT algorithm damages long processes and
is liable to starvation, but because of its prediction, it has better
response time in comparison with other algorithms. It is not
always possible to predict the execution time of processes and
there is a possibility of failure in prediction, so SRT is used
theoretically.

In RR the overhead is low and there is no starvation, and this lead
to the proper response time. In this algorithm, the time slice
should be selected carefully in such a way that algorithm present
an objective behavior to have suitable overhead. Feedback
scheduling algorithm works better than feedback queues in
decision making and preemption in a time period schedules the
processes, and consequently MLFQ is an approximation of SJF.
This algorithm makes the I/O bound processes better without
emphasizing on throughput, response time and possibility of
starvation. In this approach, the number of queues and the time
quantum are chosen by default value. MLFQ is used in interactive
and I/O bound systems, the time slice between the queues is
generally %80 for foreground and %20 for background. The
general scheduler in Unix based systems is based on MLFQ and
some modern operating systems use MLFQ as well [9]. By taking
a small quantum for layers, the response time of interactive
processes is optimized; on the other hand by taking a larger
quantum, the throughput of the system is increased.

Generally in PMLFQ scheduling different queues with different
priority are used. Each queue has its own scheduling algorithm.
All processes are selected from the high priority queues to
execute. This method may cause starvation, and generally the low
priority queues should have a higher quantum. Because of using
queues, this algorithm can be easily implemented to perform the
operating systems scheduling. Since this algorithm is used in
many cases, its response time should be optimized in comparison
with other algorithms.

4 SCOPE AND LIMITATIONS

4.1 Research Findings and Gaps..
Some of the problems with MLFQ are

 The number of priority levels of queues

 Finding a suitable scheduling algorithm for each queue

 Assigning time quantum for each queue

 Assigning initial static priorities

 Adjusting dynamic priorities

 Favoring I/O bound processes

 Differentiating foreground processes and background
processes.

The MLFQ approach is used in PMLFQ scheduling system in
such a way that the response time is decreased and the
functionality of the system is improved. The optimum numbers of
queue and the quantum for each queue are found using a fault
tolerant mechanism to achieve these goals. As the proposed
mechanism considers these objectives simultaneously, they do not
have any negative impacts on each others. In PMLFQ scheduling,
the operating system can modify the number of queues and the
quantum of each queue according to the existing processes.

4.2 Motivation, Objectives and Goals
In hard real-time systems, tasks have to be performed not only
correctly, but also in a timely fashion. Otherwise, there might be
severe consequences. In the hard real-time system, task
scheduling algorithms ensure these tasks meet their deadlines.
Scheduling involves allocating resources and time to task so that
the system meets certain performance requirements [4].

Task scheduling in hard real-time systems can be static or
dynamic. A static approach calculates schedules for tasks off-line
and it requires the complete prior knowledge of tasks’
characteristics. A dynamic approach determines schedules for
tasks on the fly and allows tasks to be dynamically invoked.
Although, the static approach has a low run-time cost, they are
inflexible and cannot adapt to a changing environment or to an
environment whose behavior is not completely predictable. When
new tasks are added to a static system, the schedule for the entire
system must be recalculated which is expensive in terms of time
and money. In contrast, dynamic approaches involve higher run-
time costs, but, because of the way they are designed, they are
flexible and can easily adapt to change in the environment.

A scheduling problem in the hard real-time system is defined by
the model of the system, by the nature of the tasks to be scheduled
and by the objectives of a scheduling algorithm. The systems can
be uni-processor or multiprocessor, centralized or distributed. The
system model is the arrangement of one or more nodes connected
by a communication network. The hard real-time system task is
characterized by its timing constraints, its precedence constraints
and resource requirements. They can be periodic or non-periodic,
pre-emptible or non-pre-emptible. The scheduling algorithm may
be an optimal algorithm or an approximate or heuristic algorithm.
A scheduling algorithm is said to be optimal if, for any set of
tasks, it always produces a schedule, which satisfies the
constraints of the tasks, whenever any other algorithm can do so.
An approximate or heuristic algorithm is necessary whenever an
optimal solution is difficult and computationally intractable.

The PMLFQ algorithm model discussed in this paper assumes that
each task:

 Repeatedly executes at a known fixed rate (its "period").

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 104

 Must end before the beginning of its next period (its
"deadline").

 Does not need to synchronize with others in order to
execute.

 Can be interrupted at any point in time and replaced by
another task in the CPU.

 Does not suspend voluntarily.

 Has zero preemption cost (task-switch times and
scheduling-algorithm execution load are neglected).

 Is ready while its assigned processing time is not
exhausted. After running out of execution units, the task
blocks until its next period.

5 OPEN PROBLEMS: THE RESEARCH
PLAN

5.1 Problem Statement
The aim of this research is to study the policy mechanisms of
different real-time schedulers in embedded systems domain and
evaluation of performance of these mechanisms. In addition, to
arrive at a common solution to simulate a parametric scheduling
policy.

5.2 Research Methodology
In a multi-task system, several processes are kept in the main
memory and processor is kept active to run a process while the
others are waiting. The key to Multi-Programming is scheduling.

Figure 6. Priority Levels of Parametric Multilevel-feedback-
queue scheduler.

The basic idea of PMLFQ is to organize jobs into a set of queues.
Each job is processed for 2i time units if in queue Qi, before being
promoted to queue Qi+1 if not completed. At any time, the
machines process jobs in the lowest queues, in each queue giving
priority to jobs at the front. While this algorithm turn out to be
very effective in practice, it behaves very poorly with respect to a
worst-case analysis, as explained below.

A good rule of thumb for flow time minimization is given by the
Shortest Remaining Processing Time [SRPT] first rule. SRPT
prescribes the preemption of a job on execution when a job with
shorter remaining processing time is released. SRPT is indeed an
optimal algorithm for a single machine [4] and provides the best
known approximation for parallel machines [7]. However, a
nonclairvoyant scheduling algorithm cannot stick to the SRPT

rule since it has no knowledge of the processing time of the jobs
before they are completed. As to MLF, it behaves on some
instances very differently from the SRPT rule in that it may
preempt jobs in a high queue that are nearly completed to process
newly released jobs with large processing time in lower queues.
This may force jobs with small remaining processing time to
spend a long time in the system while other long jobs are
processed. It has actually been shown that no deterministic
nonclairvoyant algorithm can be competitive at all against a worst
case adversary [9]. In order to circumvent these difficulties, a
randomized version of MLF, called PMLFQ, was proposed for a
single machine.

Here we are concerned with the work on short time scheduling
which is the analysis of processes existing at the main memory to
be executed by the processor. The goal of this work is allocating
time in a way that one or some systematic behavior is optimized.
Many criterions have been mentioned for evaluating scheduling in
different research papers, that among them we can refer to two
important criteria:

1]- from the viewpoint of user,

2]- from the viewpoint of system.

Each of these two categories has many criteria to be discussed. In
time-sharing, we try to reduce the response time variation because
the goal of some operating systems is providing all users’ services
are in a suitable way and minimizing the response time for users.
As it is known, Multi layer Queue (MLQ) scheduling is designed
from some prepared queues and the respective processor of each
queue, MLFQ scheduling acts the same as MLQ and process can
move dynamically in different queues. So processes that need a
large number of CPU times are sent to the lower queues and
process requiring I/O bound or related to interactive process are
sent to queue with higher priority of response. PMLFQ scheduling
algorithm is focused on total time, response time and application
of priority, but it is tried not to apply the negative influences over
the mentioned criteria. Our main jobs in this research paper are
optimizing response time of MLFQ by using a parametric
approach [9]. The MLFQ scheduling organizes the queues to
minimize the queuing delay and optimize the queuing
environment efficiency.

5.3 Background Significance and Features
of Parametric Scheduler

The scheduler is the most important part of any kernel. It
determines whether to run a new task. If so, it suspends or stops
the current task and resumes or starts the new task. The parametric
scheduler is a preemptive scheduler. It runs the longest-waiting
task at the highest occupied priority level.

 The PMLFQ scheduler employs a multi-level feedback
queue in which processes with equal priority reside on
the same run-queue. The scheduler runs processes
round-robin from the highest priority non-empty run-
queue.

 The scheduler prevents starvation by periodically
raising the priority of processes that have not recently
run.

 PMLFQ scheduler also employs higher priorities for
processes holding kernel resources. These kernel
priorities cause processes to release high-demand kernel

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 105

resources quickly, reducing the contention for these
resources.

5.3.1 LAYERED READY QUEUE
PMLFQ is unique in having a layered ready queue. The ready
queue is where ready-to-run tasks are enqueued. Nearly all
kernels, other than PMLFQ, utilize a single, ordered ready queue.
To enqueue a new task requires searching from the beginning of
the queue until the last enqueued task, of equal priority, is found.
Then the new task is enqueued at that point. Obviously, if there
are many ready tasks, this could take a long time.

Figure 7. Layered ready queue.

For PMLFQ, we observed that since PMLFQ tasks are permitted
to share priority levels (which is not true for some kernels) the
typical embedded system needs no more than 5-10 priority levels
[3]. (How finely can you slice and dice the relative importance of
each task?) Hence, why not have a separate queue for each
priority level? This is how the PMLFQ ready queue is
implemented. Each level is headed by a queue control block [qcb].
The qcb's are contiguous in memory and in order by priority.
Hence enqueueing a task is but a two-step process: (1) index to
the correct qcb, based upon the priority of the new task, and (2)
follow the backward link of the qcb to the end of the queue and
link in the task. This fast, two-step process takes the same amount
of time regardless of how many tasks are in the ready queue.

5.4 Designing the Parametric Multilevel
Queue Scheduler

In PMLFQ, we start with indefinite numbers of queues initially.
An initial value of quantum is used for each queue. When a queue
is being analyzed, its quantum value is defined by I*q, where q is
the initial value of quantum and I is the number of queues being
considered [5]. For defining the numbers of layer and quantum of
each layer is described in [2]. When the number of required
queues and the average response time are specified based on the
initial quantum of each layer, the quantum of queues should be
modified in such way that the average response time of the
processes are minimized [7].

According to the changes in the quantum of each queue, the
movement of the processes to the lower queues is changed. So the
processing time of the processes in lower layers is changed and as
a result the quantum of lower layers affects the average response
time. The optimized quantum has not been defined for lower
queues and the average response time is related to the
functionality of the whole system. Consequently the relation of

the average response time and the quantum of a specified queue
are not easily formulated [6].

To find the effect of the quantum changes, a queue should be
selected and its quantum has been changed in such a way that the
minimum number of processes has been moved to the lower
queues [1].

Now, suppose that we have n queues in the default mode. We
begin to change the quantum of layer n, Later when the last queue
is selected and its quantum is increased, there is no other queue to
be eliminated. If the quantum of this queue is reduced a queue
will be added. In this case we repeat this procedure for the newly
added layer. After updating the quantum of the last queue, we
continue with the previous queue, i.e. n-1, and change the
quantum of it. The optimized average response time is specified
by changing the queue n-1.

In this step, since there is a queue that is lower than the queue is
being studied, and due to the changes made on the processes of
the last queue after updating n-1, the optimized quantum of the
last queue should be redefined [8]. Generally, when the optimized
quantum of each layer is found, the quantum of lower levels
should be updated. Finally, the best average response time can be
calculated using the optimized quantum of each layer.

Figure 8. Defining optimized quantum for the queue by

PMLFQ function.

Figure 8, shows a schematic view of the function to find the
optimized quantum of the queue I, and the way in which the
quantum is fed and also how to limit the number of queues. When
the new average response time is found, it is compared with the
former one. If it is less than the previous one, the new value is
selected as the input of next stage to optimize the average
response time. If the new value of the average response time is
grater than the previous one, it means that the optimized average
response time has been found.

It should be guaranteed that the calculated quantum is selected as
the quantum of the specified queue. If the quantum of the other
queues is changed, we should find their optimized quantum again.
The pseudo code of the algorithm has been shown below.

5.5 PMLFQ Algorithm:

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 106

1- Produce arrival time and service time for n process randomly
using distribution function.

2- Get average response time, waiting time and maximum
required layer in first stage and set the power quantum for each
layer.

3- For each layer (i=n down to 1) update the value of queue
quantum according to the maximum number of layers and average
response time.

3.1- Find the optimum value of queue according to other
queue quantum and the average response time that is
found in the previous stages.

3.2- For each layer (j=i+1 to n) repeat the step 3.2,
consider the changes in other queue and update the
quantum.

5.6 Code Snippet for Scheduler
#include"scheduler_Parametric_queue.cpp"

struct priority

{

 int pid;

 int value;

 struct priority *next;

};

class parametric_triple_queue : public scheduler

{

 priority *pri_first,*pri_temp;

 priority *pri_second,*pri_temp_second;

 priority *pri_third,*pri_temp_third;

 int high_quantum,medium_quantum,low_quantum;

 public:

 int set_values (int,int,int,int);

 void set_quantum (int);

 int compute ();

 void destroy ();

};

Figure. 9. Basic functions of PMLFQ scheduler.

The objective is to obtain a timeline of the execution and to show
if tasks meet their deadlines or not. Tasks are assumed to be hard
real-time, preemptive, periodic, with deadline equal to the next
instance's arrival time and independent (they do not need to
synchronize with others in order to execute). They also do not
suspend its execution voluntarily. All tasks start execution at the
same time in the simulation.

void main(int argc, char *argv[])

{

 node n;

 task_t *task, *new;

 init(argc, argv);

 printf("\nSelected Scheduling Algorithm: %s,\n", labels[alg]);

 (sched_alg_init)();

 /* select which task to run next */

 for(sys_time=0;

 (merit_list->header->forward[0]!=NIL || request_list->

 header->forward[0]!=NIL) && sys_time <= max_time;

 sys_time++){

 /* and if current task emptied its allocated time... */

 if(current!= idle_task && -- current->remaining == 0){

 current->state=DEAD;

 current->cycles++;

 delete_task(deadline_list, current->deadline, current);

 current= idle_task;

 }

 /* Look out for deadline failures */

 while(key_of(n=first_node_of(deadline_list)) <=
sys_time){

 if((task= n->v)->state != DEAD){

 printf("At %d: task %c (\"%s\"),

 instance %d, Deadline Failure%s\n",

 sys_time, task->sys_id, task->name,

 task->instance, bell);

 }

 delete(deadline_list, n->key);

 }

 /* if it is time to launch a task... */

 while(key_of(n=first_node_of(request_list)) <=
sys_time){

 task_init((task= n->v));

 delete(request_list, n->key);

 insert_task(deadline_list, task->deadline,task);

 insert_task(request_list, task->deadline, task);

 }

 new = (sched_alg)();

 /* swap and register who's using the processor */

 if(current!=new){

 context_switches++;

 current->state=READY;

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 107

 current=new;

 current->state=RUNNING;

 }

 timeline.history[sys_time]= current->sys_id;

 #ifdef DEBUG

 printf("%d: %s\n", sys_time, timeline.history);

 #endif

 }

}

Figure 10. Simulation of the execution of a task set in a
multitasking environment by scheduler.

6 EVALUATION AND RESULTS

6.1 Simulation and Experimental Results of
Parametric Queue Scheduler

We define the processor utilization factor to be the fraction of
processor time spent in the execution of the task set. In other
words, the utilization factor is equal to one minus the fraction of
idle processor time. Since Ci / Ti is the fraction of processor time
spent in executing task Ti, for m tasks, the utilization factor U is:

 [3]

In PMLFQ scheduling there is a time threshold and a job
threshold. If the number of jobs submitted from the particular user
increases beyond the job threshold then the priority of the jobs
submitted above the threshold number is decreased and jobs are
migrated to a lower priority queue. In other words, with an
increasing number of jobs, the priority of jobs from a particular
user start to decrease. Moreover, a time threshold is included to
reduce the aging affect. With the passage of time, the priority of
jobs in the lower priority queues is increased so that it can also
have a chance of being executed after a certain wait time. In other
words, the more time a job has to wait the more its priority
continues to increase. This is illustrated in figure 11.

Figure 11. Priority with Time and Job Frequency.

Figure 12. Simulation of parametric queue scheduler.

Since the process arrival time is randomly distributed, we used
discrete event technique simulation. So the system state has been
changed when an event occurred during the simulation time. At
first, we sort the processes by their arrival time and then find the
first process to handle and provide its service. The PMLFQ
average response time is better by 10% than the other scheduling
algorithms [10].

7 CONCLUDING REMARKS
 As tasks interact, integrated resource scheduling is also

necessary. Algorithms exist that support special cases,
in which decisions deal with imprecise results, task-
completion value, and so on. However, no algorithm is
good for all cases.

 Real-time scheduling may seem unnecessary, but as the
project's complexity and size increase, it's the only way
to guarantee proper system behavior. It is certainly more
predictable than ad hoc techniques.

 Since Number of the queues and quantum of each queue
affect the response time directly. We continually review
the PMLFQ algorithm for solving these problems and
minimizing the response time and waiting time.

 The PMLFQ is aimed to present an intelligent algorithm
to optimize both the average response time and the
waiting time. When the response and waiting time
optimization is aimed, the PMLFQ shows a good
performance.

 We tried to decrease the overhead of the system,
However we have a little overhead to be calculated
and compared with the response time. With more
researches it can avoid starvation in PMLFQ. This
algorithm could also be used on distributed
system, in an effective way that the research in this
field is still being continued.

8 ACKNOWLEDGMENTS
I am grateful to the guide and RPAC members for their guidance
and valuable suggestions in improving the quality of this research.
My gratitude goes to the people, who previously succeeded in
implementation of general scheduler mechanisms, process

International Journal Of Computer Science And Applications Vol. 2, No. 2, November / December 2009 ISSN: 0974-1003

Published by Research Publications, Chikhli, India 108

communication, interrupt handling, different operating system
concepts etc., and making it available for further development.

9 REFERENCES
[1] Chih-Lin Hu, “On-Demand Real-Time Information

Dissemination: A General Approach with Fairness,
Productivity and Urgency”, 21st International Conference on
Advanced Information Networking and Applications, AINA
'07, 2007. Page(s):362 – 369, 21-23 May 2007.

[2] Gauthier L, Yoo S and Jerraya A, “Automatic generation and
targeting of application-specific operating systems and
embedded systems software,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(11), pp.1293-1301, November 2005.

[3] Ghosh S., Mosse D. and Melhem R., “Fault-Tolerant Rate
Monotonic Scheduling”, Journal of Real-Time Systems, pp.
149-181, 1998.

[4] Kenneth J. Duda , David R. Cheriton, “Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive threads
in a general-purpose scheduler”, Proceedings of the
seventeenth ACM symposium on Operating systems
principles, p.261-276, December 12-15, 1999, Charleston,
South Carolina, United States.

[5] Leung J. Y. T. and Whitehead J., “On the Complexity of
Fixed-Priority Scheduling of Periodic Real-Time Tasks”,
Performance Evaluation, number 2, pp. 237-250, 1982.

[6] Lu, C., Stankovic, A., Tao, G. and Son, H.S. “Feedback
Control Real-time Scheduling: Framework, Modeling and
Algorithms”, special issue of Real-Time Systems Journal on
Control-Theoretic Approaches to Real-Time Computing,
Vol. 23, No. 1/2 July / September, pp. 85-126, 2002.

[7] Manimaran G. and Siva Ram Murthy C., “A fault-tolerant
dynamic scheduling algorithm for multiprocessor real-time
systems and its analysis”, IEEE Trans on Parallel and
Distributed Systems, Volume 9, Issue 11, Page(s):1137 -
1152 , Nov 1998.

[8] Sha L., Rajkumar R. and Lehoczky J. P., “Priority
inheritance protocols: an approach to real-time
synchronization”, IEEE Transactions on Computers, Volume
39, Issue 9, : Page(s):1175 - 1185 , Sept 1990.

[9] Wang J and Ravindran Binoy, “Time-utility function-driven
switched Ethernet: packet scheduling algorithm,
implementation, and feasibility analysis", IEEE Trans on
Parallel and Distributed Systems, Volume 15, Issue 2,
Page(s):119 - 133 , Feb 2004.

[10] Yamada S and Kusakabe S, “Effect of context aware
scheduler on TLB”, IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2008. Volume ,
Issue , Page(s):1 – 8, 14-18 April 2008. DOI=
10.1109/IPDPS.2008.4536361.

Author Biographies

Prof. M.V. Panduranga Rao is a research
scholar at National Institute of Technology
Karnataka, Mangalore, India. His research
interests are in the field of real-time and
embedded system domain on Linux
platform. He has published various research
papers across India and in 22nd IEEE
international conference AINA-2008 at
Okinawa, Japan. He has also authored two
reference books on Linux Internals. He is the
Life member of Indian Society for Technical
Education and IAENG. His webpage can be
found via,

http://www.pandurangarao.i8.com/

Dr. K.C. Shet obtained his PhD degree from
Indian Institute of Technology, Bombay,
Mumbai, India, in 1989. He has been
working as a Professor in the Department of
Computer Engineering, National Institute of
Technology, Surathkal, Karnataka, India,
since 1980. He has published over 200
papers in the area of Electronics,
Communication & Computers. He is a
member of Computer Society of India,
Mumbai, India, and Indian Society for
Technical Education, New Delhi, India. His
webpage can be found via,

http://www.nitk.ac.in/~kcshet/index.html

