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ABSTRACT
Multi –Step ahead prediction of a chaotic time series is a difficult 
task that has attracted increasing interest in recent years. The 
interest in this work is the development of nonlinear neural 
network models for the purpose of building multi-step chaotic 
time series prediction. In the literature there is a wide range of 
different approaches but their success depends on the predicting   
performance of the individual methods. Also the most popular 
neural models are based on the statistical   and   traditional feed 
forward neural networks. But it is seen that this kind of neural 
model may present some disadvantages when long-term 
prediction is required. In this paper focused time lagged recurrent 
neural network (FTLRNN) model with gamma memory is 
developed not only for short-term but also for long-term 
prediction which allows obtaining better predictions of northern 
chaotic time series in future. The authors experimented the 
performance of this FTLRNN model on predicting the dynamic 
behavior of typical northern sunspots chaotic time series. Static 
Multilayer perceptron (MLP) and self organizing feature map 
(SOFM) model is also attempted and compared against the 
proposed model on the performance measures like mean squared 
error (MSE), Normalized mean squared error (NMSE) and 
Correlation Coefficient (r). The obtained results indicate the 
superior performance of estimated dynamic FTLRNN based 
model with gamma memory over the static MLP NN in various 
performance metrics. In addition, the output of proposed 
FTLRNN neural network model with gamma memory closely 
follows the desired output for multi- step ahead   prediction for all   
the   chaotic time   series considered in the study. 
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1 INTRODUCTION
Predicting the future which has been the goal of many research 
activities in the last century is an important problem for human, 
arising from the fear of unknown phenomenon and calamities all 
around the infinitely large world with its many variables showing 
highly nonlinear and chaotic behavior. Chaotic time series have 
many applications in various fields of   Science, e.g. astrophysics, 
fluid mechanics, medicine, stock market, weather, and is also 
useful in engineering such as speech coding [1], radar detection, 
of electromagnetic wave propagation and scattering [2]]. 

Inspired from the structure of the human brain and the way it is 
supposed to operate, neural networks are parallel computational 
systems capable of solving number of complex problems in such a 
diverse areas as pattern   recognition, computer vision, robotics, 
control and medical diagnosis, to name just few [3].Neural 
networks are an effective tool to perform any nonlinear input 
output mappings and prediction problem [4].. Predicting a chaotic 
time series using a neural network is of particular interest [5]. Not 
only it is   an efficient method to reconstruct a dynamical system 
from an observed time series, but it also has many applications in 
engineering problems radar like noise cancellation [6]  radar 
detection [7] , demodulation of chaotic secure communication 
systems [8] and spread spectrum /code division multiple access 
(CDMA) systems [9,10] .It is already established that, under 
appropriate conditions, they are able to uniformly approximate 
any complex  continuous function to any desired degree of 
accuracy [11]. Later, similar results were published independently 
in [12].  Neural networks are the instruments in broad sense can 
learn the complex nonlinear mappings from the set of 
observations [13].The static MLP network has gained an immense 
popularity from numerous practical application published over the 
past decade, there seems to be substantial evidence that multilayer 
perceptron indeed possesses an impressive ability [14]. There 
have been some theoretical results that try to explain the reasons 
for the success [15] and [16]. Most applications are based on feed 
forward neural networks, such as the back propagation 
(BP)network [17 and   Radial basis function(RBF) network [18-
19]. It has also been shown that modeling capacity of feed 
forward neural networks can be improved if the iteration of the 
network is incorporated into the learning process [20]. From the 
scrupulous review of the related research work, it is noticed that 
no simple model is available for long term prediction of sunspots 
chaotic time series so far and for the individual   North  
hemisphere sunspots chaotic time series. It is necessary to 
develop a simple model that is able  to  perform  short , medium 
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and long term prediction of such individual northern hemisphere 
chaotic time series with reasonable accuracy . In view of the 
remarkable ability of neural network in learning from the 
instances, it can prove as a potential candidate with a view to 
design a versatile predictor (forecaster) for the chaotic time series.  

The paper is organized as follows. First the optimal static NN 
based model on MLP is attempted to model the given system. 
Next on the same parameter the self organizing feature map and 
best dynamic focused time lagged NN model with built in gamma 
memory is estimated for prediction for all the short term and long 
term ahead prediction. Next the comparison between these  
models are carried out on the basis of the performance measures 
such as Mean Square Error (MSE), Normalized mean square error 
(NMSE) and Correlation coefficient (r) on testing as well as 
training data set for multi step head prediction ( K=1,6,12,18,24 
months ahead ). The various parameters like number of hidden 
layers, number of processing elements, step size, momentum 
value in hidden layer, in output layer the various transfer 
functions like tanh, sigmoid, linear-tan-h and linear sigmoid, 
different error norms L1,L2, L3, L4 ,L5 and L�, Epochs variations 
and different combination of training and testing samples are 
exhaustively experimented for obtaining the proposed robust 
model for the multi step ahead prediction of the North  and  South
hemisphere sunspots  chaotic time series. 

2 STATIC NN BASED MODEL
Static NN s typically uses MLP as a backbone. They are layered 
feed forward networks typically trained with static back 
propagation. MLP solid based model has a solid foundation [21 -
22]. The main reason for this is its ability to model simple as well 
as complex functional relationships. This has been proven through 
number of practical applications [23].  In [11] it is shown that all 
continuous functions can be approximated to any desired 
accuracy, in terms of the uniform norm, with a network of one 
hidden layer of sigmoid or (hyperbolic tangent) hidden units and a 
layer of linear or tan h output unit to include in the hidden layer. 
The paper does not explain how many units to include in the 
hidden layer. This is discussed in [24] and a significant result is 
derived approximation capabilities of two layer perception 
networks when the function to be approximated shows certain 
smoothness. The biggest advantage of using MLP NN for 
approximation of mapping from input to the output of the system 
resides in its simplicity and the fact that it is well suited for online 
implementation. The objective of training is then to determine a 
mapping from a set of training data to the set of possible weights 
so that the network will produce predictions y (t), which in some 
sense are close to the true outputs y (t). The prediction error 
approach is based on the introduction of measure of closeness in 
terms of   mean square error (MSE) criteria:
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The weights are then found as: 

arg min ( , )N
NV Z
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� �
�

�

by some kind of iterative minimization scheme: 

( 1) ( ) ( ) ( )i i i if� � �� � �

Where �  (i) specifies the current iterate (number “i”), f (i) is the 
search direction and � (i) the step size. 

When NN has been trained, the next step is to evaluate it. This is 
done by standard method in statistics called independent 
validation [25]. It is never a good idea to assess the generalization 
properties of a   NN   based on training data alone. This method 
divides the available data sets into two sets namely training data 
set and testing data set. The training data set are next divided into 
two partitions: the first partition is used to update the weights in 
the network and the second partition is used to assess (or cross 
validate) the training performance. The testing data set are then 
used to assess how the network has generalized. The learning and 
generalization ability of the estimated NN based model is 
assessed on the basis of certain performance measures such as 
MSE, NMSE and the regression ability of the NN by visual 
inspection of the regression characteristics for different outputs of 
system under study.  

3 FTLRNN    MODEL: 
Time lagged recurrent networks (TLRNs) are MLPs extended 
with short term memory structures. Here, a “static” NN (e.g., 
MLP) is augmented with dynamic properties [14]. This, in turn, 
makes the network reactive to the temporal structure of 
information bearing signals. For a NN to be dynamic, it must be 
given memory. This memory may be classified into “short-term” 
and “long-term” memory. Long term memory is built into a NN 
through supervised learning, whereby the information content of 
the training data set is stored (in part or in full) in the synaptic 
weights of the network [26]. However, if the task at hand has a 
temporal dimension, some form of “short-term” memory is 
needed to make the network dynamic. One simple way of 
building short-term memory into the structure of a NN is through 
the use of time delays, which can be applied at the input layer of 
the network (focused). A short-term memory structure transforms 
a sequence of samples into a point in the reconstruction space 
[27].This memory structure is incorporated inside the learning 
machine. This means that instead of using a window over the 
input data, PEs created are dedicated to storing either the history 
of the input signal or the PE activations.

The gamma memory PE has a multiple pole that can be adaptively 
moved along the real Z-domain axis, that is the gamma memory 
can implement only low pass (0 < � < 1) or high pass (1 < � < 2) 
transfer functions. The high pass transfer function creates an extra 
ability to model fast-moving signals by alternating the signs of the 
samples in the gamma PE (the impulse response for 1 < � < 2 has 
alternating signs). The depth in samples parameters (D) is used to 
compute the number of taps (T) contained within the memory 
structure(s) of the network.
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3.1 Self Organizing Feature Maps (SOFM)  
These networks are based on the competitive learning; the output 
neurons of the network compete among themselves to be 
activated or fired, with the result that only one output neuron, or 
one neuron per group, is on at any one time. An output neuron 
that wins the competition is called a winning neuron. The 
essential parameters of the algorithm are: 

1) A continuous input space of activation patterns that are 
generated in accordance with a certain probability distribution. 

2) A topology of the network in the form of a lattice of neurons, 
which defines a discrete Out space [3]. 

The values of weight vectors are updated for the winning 
node and its neighbors. The weight vectors are calculated 
as follows:

  (10) 

Where, Input vector X has K patterns and the number of 
elements of weight vector is equal to the number of the 
processing elements in the output layer , t - number of 
iteration, c - number of cycle,   (t)- learning rate ,N(c,r)- 
neighborhood  function ,r - neighborhood radius.

4 SUN SPOT TIME SERIES 
A sun spot number is a good measure of solar activity which has a 
period of 11 years, so called solar cycle. The solar activity has a 
measure effect on earth, climate, space weather, satellites and 
space missions, thus is an important value to be predicted. But 
due to intrinsic complexity of time behavior and the lack of a 
quantitative   theoretical model, the prediction of solar cycle is 
very difficult. Many prediction techniques   have been examined 
on the yearly sunspots number time series as an indicator of solar 
activity. However, in more recent studies the international 
monthly sunspot time series, which has a better time resolution 
and accuracy, has been used. In particular, a nonlinear dynamics 
approach has been developed in [28] and prediction results are 
compared between several prediction techniques from both 
statistical and physical classes. There has been a lot of work on 
controversial issue of nonlinear characteristics of the solar activity 
[28-32]; and a several recent analysis have provided evidence for 
low dimensional deterministic nonlinear -chaotic behavior of the 
monthly smoothed sun spot time series [28, 29, 30] and has 
intense .The data considered   the monthly variations from 
January 1749 to December 2006 .The total samples are 3096 
considered. The   series is normalized in the range   of -1 to +1. 
The monthly smoothed sunspot number time series is downloaded 
from the SIDC (World data center for the sun spot Index) [32]. 
The monthly sunspots time series is a combination of number of 
sunspots in northern hemisphere and southern hemisphere. In this 
work, the monthly sunspots of northern hemisphere are 
considered.

5 EXPERIMENTAL RESULTS:
The choice of the number of hidden layers and the number of 
hidden units in each hidden layers is critical [33]. It has been 
established that a MLPNN that has only one hidden   layer, with 

sufficient number of   neurons,   acts as a universal   
approximators of nonlinear mappings [34].The tradeoff between 
accuracy and complexity of the model should be resolved 
accurately [35-36]. An exhaustive and careful experimentations 
has been carried to determine the configuration of the static MLP 
Model and the optimal proposed FTLRNN model for all the step 
(K=1,6,12,18 ,24) months ahead  prediction . It is seen that the 
performance of this model is optimal on the test dataset for the 
following No. of taps = 6, Tap Delay = 1. Trajectory Length = 50. 
All the possible variations for the model such as number of 
hidden layers,  number of processing elements in each hidden 
layer, different transfer functions  like tan h, linear tanh,  sigmoid, 
linear sigmoid in output layer, different supervised learning rules 
like momentum ,step, conjugant gradient and quick propagation 
are investigated in simulation. The step size and momentum are 
gradually varied from 0.1 to 1 for static back   propagation rule. 
After meticulous examination of the performance measures like 
MSE, NMSE, Correlation Coefficient (r), the optimum 
parameters are found and mentioned in the table 1 for 60% used 
as training samples, 25 % as testing samples and 15% cross 
validation samples.

Table 1: Parameters for the Neural network Models 

Sr. 

no.

Parameters Hidden Layer Output 
Layer 

1 Processing elements 15 1 

2 Transfer function tanh Tanh 

3 Learning rule Momentum Momentum 

4 Step Size 1 0.1 

5 Momentum 0.8 0.8 

It is found that the performance of the selected model is optimal 
for 15 neurons in the hidden layer with regards to the MSE, 
NMSE, and the correlation coefficient (r) for the testing data sets. 
When we attempted to increase the number of hidden layer and 
the number of processing element in the hidden layer, the 
performance of the model is not to seen to improve significantly 
.On the contrary it takes too long time for training because of 
complexity of the model. As there is single input and single 
output for the given system, the number of input and output 
processing elements is chosen as one. Now the NN Model is 
trained three times with different weight initialization with 1000 
iterations of the static back propagation algorithm with 
momentum term for all the three models for all the 1,6 , 12, 18 
and 24 months ahead predictions as shown in table 2.

From the table 2, it is observed   that   FTLRNN   model is able to 
predict the monthly  northern sunspots chaotic  time series 
elegantly well as compared to multilayer   perceptron  (MLP) and 
self organizing feature map (SOFM) on testing data set with 
regards to MSE,NMSE and correlation coefficient (r). Also the 
graphs are plotted for desired output and actual output 1,6,12,18 
and 24  months ahead prediction for MLP and SOFM neural 
network as shown in figure 1 to 6 for northern hemisphere. For 
the proposed FTLRNN model the graphs are plotted for desired 
output and network output as shown in   figure   6 to 12.
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Table 2 Performance of Neural Network Models for testing data set (for northern hemisphere sun pots) 

   MLP Neural Network            FTLRNN                  SOFM K
(months)

MSE NMSE  r MSE NMSE r MSE NMSE r

1 0.00252 0.03296 0.9765 0.00207 0.03124 0.98928 0.00211 0.3187 0.9812 

6 0.00886 0.12354 0.93954 0.00437 0.06535 0.97497 0.00953 0.14241 0.93298 

12 0.02661 0.39485 0.79227 0.01415 0.21006 0.91345 0.02847 0.42241 0.77782 

18 0.04681 0.69153 0.4681 0.02173 0.32103 0.86821 0.07968 0.70850 0.58202 

24 0.6454 0.95030 0.36815 0.02692 0.39647 0.83186 0.06715 0.98877 0.33654 
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6 CONCLUSION
It is seen that focused time lagged recurrent neural  network 
model  with gamma memory is able to predict the northern 
sunspots chaotic time  series quite well in comparison with the 
Multilayer preceptron (MLP) and self organizing feature map 
(SOFM). Static NN configuration such as MLP NN based model 
and self organizing feature map (SOFM) network are failed to 
cope up with the underlying nonlinear dynamics of the   sunspots   
chaotic time series. It is seen that MSE, NMSE of the proposed 
focused time lagged recurrent neural network (FTLRNN) 
dynamic model for testing data set as well as for training data set 
are significant better than those of static MLP NN and SOFMNN 
model. For the 12, 18 and 24 months ahead prediction the value 
of MSE and NMSE for the proposed FTLRNN model is 
significantly improved. Also for the proposed FTLRNN model 
the output closely follows the desired output for all the months 
ahead prediction for northern sunspots time series as shown in 
figure 6 to 10 as compared to the MLP and SOFM.  In addition  it 
is  also observed  that the correlation coefficient of this model for 
testing and training exemplars are much higher than MLP and self 
organizing feature map (SOFM)  neural network. It is resulted 
from the experiments that the FTLRNN model learns the 
dynamics of northern monthly sunspot chaotic time series quite 
well as compared to Multilayer perceptron and self organizing 
feature map. On the contrary, it is observed that static MLP NN 
and self organizing   feature map (SOFM) performs poorly bad, 
because on the one hand it yields much higher MSE and NMSE 
on testing data sets and on the other hand the correlation 
coefficient r for testing data set is far less than unity. This is also 
confirmed from the desired output Vs actual output plots for all 
the steps for MLP and SOFM model as shown in figure 1 to 6 all 
the months ahead prediction. Hence the focused time lagged 
recurrent neural network with gamma memory filter has out 
performed the static MLP based neural network and SOFM   
better for all the months’ ahead predictions for monthly north 
hemisphere chaotic time series.
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