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ABSTRACT
In this paper the   multi step ahead prediction of typical   Duffing  
Chaotic time series and  the monthly sunspots real time series are  
carried out.  These two time series are   popularized due to their 
highly chaotic behavior. This paper compares the performance of 
two neural network configurations namely a Multilayer 
Perceptron (MLP) and proposed FTLRNN with gamma memory   
for the duffing time series for 1, 5,10,20,50 and 100-step ahead 
prediction and for monthly sunspot time series for 1, 6, 12, 18 & 
24  month ahead prediction . The standard back propagation 
algorithm with momentum term has been used for both the 
models.            

It is seen that estimated dynamic fully recurrent model clearly 
outperforms the MLP NN in various performance matrices such 
as Mean square error (MSE), Normalized mean square error 
(NMSE) and correlation coefficient ( r)  on testing as well as 
training data set for multi step prediction (K=1,5,10,20,50,100) 
for duffing  time series and for the  sunspot time series  for 1, 6, 
12, 18 &24  month ahead prediction.  In addition, the output of 
proposed neural network model closely follows the desired output 
for all the step ahead prediction. It is observed that suggested 
recurrent models have the remarkable capability of time series 
prediction. The major contribution of this paper is that Various 
parameters like number of processing elements, step size, 
momentum value in hidden layer, in output layer the various 
transfer functions like tanh, sigmoid, linear-tan-h and linear 
sigmoid, different error norms L1, L2 ,Lp  to L�.

Keywords: Chaotic, Multistep-prediction 

1 INTRODUCTION
 Neural network have been widely applied to the prediction 
problem[1]. Examples range from forecasting the  stock market 
and  weather [1] to speech coding [2] and noise cancellation [3] 
.Predicting a chaotic time series using a neural network is of 
particular interest[4-6]. Not only it has an efficient method to 
reconstruct a dynamical system from an observed time series, but 
it also has many applications in engineering problems such as 
speech coding [7], radar detection ,modeling of electromagnetic 
wave propogation and scattering [8], [9]. The main motivation for 
analysis and research of chaotic time series is to predict the future 
and understand the fundamental feature and  proceses in system, 
which are used in every sector of the human life. Recognizing 
chaotic dynamics is potentially important for understanding and 

managing real world problems.

One of the primary reasons for employing neural network was to 
create a machine that was able to learn from experience [10] They 
have the capability to learn the complex nonlinear mappings from 
a set of observations and predict the future. 

The modeling and analysis of chaotic time series has also attracted 
the attention of many researchers. The static MLP network has 
gained an immense popularity from numerous practical 
application published over the past decade, there seems to be 
substantial evidence that Multilayer Perceptron indeed possesses 
an impressive ability .There have been some theoretical results 
that try to explain the reasons for the success [11] and [12].  
However, there are some limitations of this famous static neural 
network configuration .It cannot cope up with rapidly changing 
nonlinear dynamics [10]. Therefore it is necessary a NN 
configuration that can learn the temporal variation or structure 
underlying the data in true sense. In view of this, dynamic 
modeling will certainly help to improve the learning and 
generalization   ability.  Hence, in this research work, a dynamic 
NN topology is developed so as to explicitly include time 
relationships in the input and output mappings.   

In this paper a novel focused time lag recurrent neural network 
with gamma memory is proposed as an intelligent tool for 
predicting   duffing time  series for multi step (1,5,10,20,50 &100) 
ahead prediction and fully recurrent network model is an 
intelligent tool for predicting the real time sunspot monthly time 
series for 1,6,12,18 and 24 month ahead prediction .This  paper is 
organized as follows. First the optimal static NN based model on 
MLP is attempted to model the given system. Later the best 
dynamic time NN model with built in gamma memory is 
estimated for predictions. For sunspot monthly   time series the 
different Neural network models are attempted   . Next a 
comparison between these  models are carried out on the basis of 
the performance measures such as Mean square error (MSE), 
Normalized mean square error (NMSE) and correlation 
coefficient (r) on testing as well as training data set for Multi step 
ahead prediction (K=1,5,10,20,50,100).The various parameters 
like number of hidden layers, number of processing elements, step 
size, momentum value in hidden layer, in output layer the various 
transfer functions like tanh, sigmoid, linear-tan-h and linear 
sigmoid, different error norms L1,L2 ,Lp to L�, Epochs 
variations and different combination of training and testing 
samples are exhaustively experimented for obtaining the proposed 
robust model for long term (k=20,50,100) step prediction and 
short term (1,5,10) prediction for duffing time series and 1,6,12 18 
& 24 months ahead for monthly sunspot time series  Finally, the 
conclusion  are discussed with a recommendation to use proposed 
recurrent neural network configuration respectively. 

2 STATIC NN BASED MODEL 
Static NN s typically use  MLP as a backbone. They are layered 
feed forward networks typically trained with static back 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.

© Copyright 2011 Research Publications, Chikhli, India  



International Journal Of Computer Science And Applications Vol. 4, No. 1, April / May 2011                                               ISSN: 0974-1003 

Published by Research Publications, Chikhli, India           40

propagation  . MLP solid based model has a solid foundation    
[24 25]. The main reason for this is its ability to model simple as 
well as complex functional relationships. This has been proven 
through number of practical applications [13].In [14]  it is shown 
that all continuous functions can be approximated to any desired 
accuracy, in terms of the uniform norm, with a network of one 
hidden layer of sigmoidal or (hyperbolic tangent) hidden units and 
a layer of linear or tan h output unit to include in the hidden layer. 
.This   is discussed in [13] and a significant result is derived 
approximation capabilities of two layer perceptron   networks 
when the function to be approximated shows certain smoothness. 
The biggest advantage of using MLP NN for approximation of 
mapping from input to the output of the system resides in its 
simplicity and the fact that it is well suited for online 
implementation [14] .The objective of training is then to 
determine a mapping from a set of training data to the set of 
possible weights so that the network will produce predictions 
y(t),which in some sense are close to the true outputs y(t). The 
prediction error approach is based on the introduction of measure 
of closeness in terms of   mean square error (MSE) criteria:  

)1())2/1(

]|(^)([)2/1),(

1

2

1

�����������

����

�

�

�

�

�

	


		

N

t

N

t

N
N

tN

tytyNZV

The weights are then founds as: 	 ^ = arg  min0 VN(	 ,ZN), by 
some kind of iterative minimization schem: 	  (i+1)= 	  (i)+�(i)  f (i),

Where 	  (i) specifies the current iterate (number “i”), f (i)  is the 
search direction and �(i) the step size. 

When NN has been trained, the next step is to evaluate it .   There 
is no specific rule governing the splitting of data in the literature 
[27].However this is done by standard method in statistics called 
independent validation. This method divides the available datasets 
into training and testing data sets. This method divides the 
available data sets into two sets namely training data set and 
testing data set .The training data set are next divide into two 
partitions: the first partition is used to update the weights in the 
network and the second partition is used to assess (or cross 
validate) the training performance .The testing data set are then 
used to assess how the network has generalized .The learning and 
generalization ability of the estimated NN based model is assessed 
on the basis of certain performance measures such as  MSE, 
NMSE and the regression ability of the NN by visual inspection 
of the regression characteristics for different outputs of system 
under study.  

Since it is very likely that one ends up in a bad local minimum, 
the network is trained couple of times (typically least three times) 
starting from different initial weights.  Neuro solution  

(version5) and  MATLAB tool box   (version7.0) are use for 
obtaining the results. 

3 PERFORMANCE MEASURES MSE
The generalization performance of the network is valuated  on the 
basis of following parameters [14] 

The mean square error is given by  
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Where P = number of output PEs  (processing elements) , 
N=number of exemplars in the data set ,yij =network output for 
exemplar i at PEj , dij=desired output for exemplar i  at PEj. 

NMSE    (Normalized Mean square Error) 
The normalized mean square error is defined by the following 
formula: 
Where    P=Number of output PEs, 

 N= Number of exemplars in data set, 

MSE =Mean square error, dij= desired output for exemplar i at pej 
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[c] The size of the mean square error (MSE) can be used to 
determine how well the network output fits the desired output  , 
but it doesn’t necessarily reflect whether the two sets of data 
move in the same direction. For instance by simply scaling the 
network output ,  we can change the MSE without changing the 
directionality of the data. The correlation coefficient solves this 
problem. By definition, the correlation coefficient between a 
network output x and a desired output d is. 
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----(4) 
The correlation coefficient is confined to the range        [-1,1] 
.When r =1 ,there is  perfect positive linear correlation between x 
& d  that is they co-vary means they vary by the same amount 
,when r=-1 ,there is a perfectly linear negative correlation between 
x and d that is they vary in opposite ways(when x increases ,d 
decreases that is they varies in opposite ways ) and when r=0 there 
is no correlation between x and d i.e. the variables are called 
uncorrelated. Intermediate values describe partial correlations. 

4 FTLRNN MODEL 
Time lagged recurrent networks (TLRNs) are MLPs extended 
with short term memory structures. Here, a “static” NN (e.g., 
MLP) is augmented with dynamic properties [  15  dudul liquid ]. 
This, in turn, makes the network reactive to the temporal structure 
of information bearing signals. For a NN to be dynamic, it must 
be given memory. This memory may be classified into “short-
term” and “long-term” memory. Long term memory is built into a 
NN through supervised learning, whereby the information content 
of the training data set is stored (in part or in full) in the synaptic 
weights of the network[ 16 de Varies B & J C Principe ] . 
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However, if the task at hand has a temporal dimension, some form 
of “short-term” memory is needed to make the network dynamic. 
One simple way of building short-term memory into the structure 
of a NN is through the use of time delays, which can be applied at 
the input layer of the network (focused). A short-term memory 
structure transforms a sequence of Samples into a point in the 
reconstruction space [ 16  ].  This memory structure is 
incorporated inside the learning machine. This means that instead 
of using a window over the input data, PEs created are dedicated 
to storing either the history of the input signal or the PE 
activations.  
The input  PEs of an MLP are replaced with a tap delay line, 
which is followed by the MLP NN. This topology is called the 
focused time-delay NN (TDNN) . The focused topology only 
includes the memory kernels connected to the input layer. This 
way, only the past of the input is remembered. The delay line of 
the focused TDNN stores the past samples of the input. The 
combination of the tap delay line and the weights that connect the 
taps to the PEs of the first hidden layer are simply linear 
combiners followed by a static non-linearity.  

Typically, a gamma short-term memory mechanism is combined 
with nonlinear PEs in restricted topologies called focused. 
Basically, the first layer of the focused TDNN is a filtering layer, 
with as many adaptive filters as PEs in the first hidden layer. The 
outputs of the linear combiners are passed through a non linearity 
(of the hidden-layer PE) and are then further processed by the 
subsequent layers of the MLP for system identification, where the 
goal is to find the weights that produce a network output that best 
matches the present output of the system by combining the 
information of the present and a predefined number of past 
samples (given by the size of the tap delay line) [17 Gamma 
modal ]. 

Size of the memory layer depends on the number of past samples 
that are needed to describe the input characteristics in time. This 
number depends on the characteristics of the input and the task. 
This focused TDNN can still be trained with static back-
propagation, provided that a desired signal is available at each 
time step. This is because the tap delay line at the input layer 
doesn’t have any free parameters. So the only adaptive parameters 
are in the static feed forward path.  
The memory PE receives in general many inputs, x1(n) and 
produces multiple outputs y = [y0(n), …., yD(n)]T, which are 
delayed versions of y0(n) the combined input,  
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where,  g(.) is a delay function. 
These short-term memory structures can be studied by linear 
adaptive filter theory if g(.) is a linear operator. It is important to 
emphasize that the memory PE is a short-term memory 
mechanism, to make clear the distinction from the network 
weights, which represent the long-term memory of the network. 

There are basically two types of memory mechanisms: memory 
by delay and memory by feedback. We seek to find the most 
general linear delay operator (special case of the Auto Regressive 
Moving Average model) where the memory traces yk(n) would be 
recursively computed from the previous memory trace yk-1(n). 
This memory PE is the generalized feed forward memory PE. It 

can be shown that the defining relationship for the generalized 
feed forward memory PE is  mentioned . 

)(*)()( 1 ngngng kk �� k�1          -(6)           

where * is the convolution operation, g(n) is a causal time 
function, and k is the tap index. Since this is a recursive equation, 
g0(n) should be assigned a value independently. This relationship 
means that the next memory trace is constructed from the previous 
memory trace by convolution with the same function g(n), the 
memory kernel yet unspecified. Different choices of g(n) will 
provide different choices for the projection space axes. When we 
apply the input x(n) to the generalized feed forward memory PE, 
the     tap signals yk(n) become 

yk(n)=g(n)*yk-1(n)   k� 1                                      ------(7) 
the convolution of yk – 1(n) with the memory kernel. For k=0 we 
have

y0(n)=g0(n)*x(n)                                                  ------(8) 
where  g0(n) may be specified separately. The projection x(n) of 
the input signal is obtained by linearly weighting the tap signals 
according to  
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The most obvious choice for the basis is to use the past samples of 
the input signal x(n) directly, that is the kth tap signal becomes 
yk(n) = x(n – k). This choice corresponds to g(n) = �(n – 1)                         
------(10)

In this case g0(n) is also a delta function �(n) (delta function 
operator used in the tap delay line). The memory depth is strictly 
controlled by D, that is the memory traces store the past D 
samples of the input. The time delay NN uses exactly this choice 
of basis.  

The gamma memory PE attenuates the signals at each tap because 
it is a cascade of leaky integrators with the same time constant 
gamma modal.] The gamma memory PE is a special case of the 
generalized feed forward memory PE where  

nng )1()( �� ��  n � 1                            ---------(11) 

and ).()(0 nng ��  The gamma memory is basically a cascade 
of lowpass filters with the same time constant 1 - �. The over all 
impulse response of the gamma memory is  
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where (:) is a binomial coefficient defined by  
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p, the overall impulse response gp(n) for varying p represents a 
discrete version of the integrand of the gamma function [17], 
hence the name of the memory.  
The gamma memory PE has a multiple pole that can be adaptively 
moved along the real Z-domain axis, that is the gamma memory 
can implement only low pass (0 < � < 1) or high pass (1 < � < 2) 
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transfer functions. The high pass transfer function creates an extra 
ability to model fast-moving signals by alternating the signs of the 
samples in the gamma PE (the impulse response for 1 < � < 2 has 
alternating signs). The depth in samples parameters (D) is used to 
compute the number of taps (T) contained within the memory 
structure(s) of the network.  
An exhaustive and careful experimental study has been carried out 
to determine the optimal parameters of the proposed FTLRNN 
model. It is seen that the performance of this model is optimal on 
the test dataset for the following Wples = 10, , No. of taps = 6, 
Tap Delay = 1. Trajectory Length = 50 . 

4.1 Jordan/ Elman NN 
The theory of neural networks with context units can be analyzed 
mathematically only for the case of linear PEs. In this case the 
context unit is nothing but a very simple lowpass filter. A lowpass 
filter creates an output that is a weighted (average) value of some 
of its more recent past inputs. In the case of the Jordan context 
unit, the output is obtained by summing the past values multiplied 
by the scalar as shown in the figure below. 

Fig   Context unit response 

Notice that an impulse event x(n) (i.e. x(0)=1, x(n)=0 for n>0) 
that appears at time n=0, will disappear at n=1. However, the 
output of the context unit is t1 at n=1, t2 at n=2, etc. This is the 
reason these context units are called memory units, because they 
"remember" past events. t should be less than 1, otherwise the 
context unit response gets progressively larger (unstable). 
The Jordan network and the Elman network combine past values 
of the context units with the present inputs to obtain the present 
net output. The input to the context unit is copied from the 
network layer, but the outputs of the context unit are incorporated 
in the net through adaptive weights.. One issue in these nets is that 
the weighting over time is kind of inflexible since we can only 
control the time constant (i.e. the exponential decay). Moreover, a 
small change in t is reflected in a large change in the weighting 
(due to the exponential relationship between time constant and 
amplitude). In general, we do not know how large the memory 
depth should be, so this makes the choice of t  problematic,  
without a mechanism to adapt it.  
The Neural Wizard provides four choices for the source of the 
feedback to the context  units (the input, the 1st hidden layer, the 
2nd hidden layer, or the output). In linear systems the use of the 
past of the input signal creates what is called the moving average 
(MA) models. They represent well signals that have a spectrum 
with sharp valleys and broad peaks. The use of the past of the 
output creates what is called the autoregressive (AR) models. 
These models represent well signals that have broad valleys and 
sharp spectral peaks. In the case of nonlinear systems, such as 
neural nets, these two topologies become nonlinear (NMA and 
NAR respectively). The Jordan net is a restricted case of an NAR 
model, while the  configuration with context units fed by the input 
layer are a restricted case of NMA. Elman’s net does not have a 
counterpart in linear system theory. As you probably could gather 

from this simple discussion, the supported topologies have 
different processing power, but the question of which one 
performs best for a given problem is left to experimentation.

4.2 Recurrent Neural network 
Fully recurrent networks feed back the hidden layer to it self .  
Partially recurrent networks start with a fully recurrent net and 
add a feed forward connection that bypasses the recurrence, 
effectively treating the recurrent part as a state memory. These 
recurrent networks can have an infinite memory depth and thus 
find relationships through time as well as through the 
instantaneous input space. Most real-world data contains 
information in its time structure. Recurrent networks are the state 
of the art in nonlinear time series prediction, system identification, 
and temporal pattern classification. 

4.3 Self   Organizing Feature Map  
Kohonen’s SOFM (Self Organizing Feature Map) proposed by 
Kohonen  is a two layered network have been used in some 
application with great deal of success .Based on unsupervised 
learning ,they have been greatly used in exploratory tasks[18]. 
There are several approaches that adopt the basic algorithm in 
order to support the time sequence processing. This way of facing 
problem, that some authors denominate temporal SOM [19] have 
been used in wide variety of application such as  prediction. The 
first layer of network layer is the input layer. Typically second 
competitive layer is organized as a two-dimensional grade. All the 
dimensions go from first layer to the second layer.  The two layers 
are fully interconnected as each unit is connected to all  of the unit 
in the competitive layer.  When an input pattern is presented each 
unit in first layer takes on the values at the corresponding entry in 
the input pattern .The second layer unit then sums their input & 
compete to find a single winning unit the over all operation of 
SOFM (Self Organizing Feature Map) is similar   to the 
competitive learning paradigm. Each inter connection in the 
Kohonen has an associated weight values for axon [20] .  The 
initial stage at network has randomized values for the weights. 
Typically the weights are sot by adding a small random number at 
average values for the entries in the input pattern. 

The structure consists of two main network & back propagation 
network. Every axon and the synapse network a corresponding 
back axon and back synapse that attach to the upper right 
component of the corresponding forward component. Data flows 
forward from input to output. The forward propagation network. 
The criteria   compares the output with the   desired response and 
computes the error. The error is then injected in to the back 
propagation network and the data flows through this network, 
back towards the original input. 

4.4 Duffing Time Series 
In science, chaos is used as a synonym for irregular behavior, 
whose long term prediction is essentially unpredictable chaotic 
differential equations exhibits not only irregular behavior but they 
are also unstable with respect to small perturbations of their initial 
condition   [ 21 two layer perceptron dudul ]. Consequently it is 
difficult to forecast the future of time series based on chaotic 
differential equations; they should be a good bench mark for a 
neural network design algorithm.
The duffing equation is time delay differential equation which is 
given as  
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dt
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�                        ------------(13) 
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                                    ----------(15) 

Where driving force F=7.5, Xo=initial position 1.0, damping 
constant (b=0.05),Frequency w =1.0,Delay time=0.001.The 
chaotic time series is as shown in fig 1.     

A sunspot is a region on the Sun surface (photosphere) that is 
marked by a lower temperature than its surroundings and has 
intense magnetic activity, which inhibits convection forming areas 
of low surface temperature. Although they are blindingly bright at 
temperatures of roughly 4000-4500 K, the contrast with the 
surrounding material at about 5800 K leaves them clearly visible 
as dark spots. If they were isolated from the surrounding 
photosphere they would be brighter than an electric arc. A 
minimum in the eleven-year sunspot cycle may have taken place 
in late 2007 and start of cycle 24 is expected in 2008.Sunspots are 
often related to intense magnetic activity such as coronal loops 
and   reconnection.  Most solar flares and   coronal mass ejection  
originate in magnetically active regions around sunspot groupings 
[24]. Sunspot numbers rise and fall with an irregular cycle with a 
length of approximately 11 years. In addition to this, there are 
variations over longer periods. The recent trend is upward from 
1900 to the 1960s, then somewhat downward. The Sun was last 
similarly active over 8,000 years ago. The number of sunspots has 
been found to correlate with the intensity of solar radiation over 
the period (since 1979) when satellite measurements of radiation 
are available. Since sunspots are dark it might be expected that 
more sunspots lead to less solar radiation and a decreased solar 
constant. However, the surrounding areas are brighter and the 
overall effect is that more sunspots means a brighter sun. The 
variation caused by the sunspot cycle to solar output is relatively 
small, on the order of 0.1% of solar constant. The data considered   
the monthly variations from January 1949 to December 2006 .The 
total samples are 3097 considered. 
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Fig. 2 Sun spot time series 

5 EXPERIMENTAL RESULTS 
5.1 Duffing time series 
An exhaustive and careful experimentation   has been carried to 
determine the configuration of the static MLP Model and the 
optimal proposed   models for all the step (K=1, 5.10,20,50,100) 
prediction for the duffing time series and the sun spot time series . 
All the possible variations for the model such as number of hidden 
layers, number of processing elements in each hidden layer, 
different transfer functions  like tan h, linear tanh,  sigmoid, linear 
sigmoid in output layer, different supervised learning rules like 
momentum ,step, conjugant gradient and quick propagation are 
investigated in simulation. The step size and momentum are 
gradually varied from 0.1 to 1 for static back   propagation rule. 
After meticulous   examination   of the performance measures like 
MSE, NMSE, Correlation Coefficient and the regression ability 
and by processing elements graph. By closely observing 
processing element graph of Fig.3 the optimal parameters are 
decided and listed in table 1 for the duffing  time series .

Table 1: Parameters of FTLRNN 

Sr.
no.

Parameter Hidden 
Layer

Output 
Layer

1 Processing 
elements 

21 1 

2 Transfer function tanh Lin tanh 
3 Learning rule Momentum momentum 
4 Step Size 1 0.1 
5 Momentum 0.8 0.8 

Average of Minimum MSEs with Standard Deviation 
Boundaries
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Fig. 3 Selection of processing elements 
It is found that the performance of the selected model is optimal 
for 21 neurons in the hidden layer with regard to the MSE, 
NMSE, and correlation coefficient and the regression performance 
for the testing data sets. When we attempted to increase the 
number of hidden layer and the number of processing element in 
the hidden layer, the performance of the model is not to seen to 
improve significantly .On the contrary it takes too long time for 
training because of complexity of the model. As there is single 
input and single output for the given system, the number of input 

 First 100  samples of Duffing time series 
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Fig. 1  Duffing  time series 
Sun spot Time series
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and output Processing Elements is chosen as one. Now the NN 
Model (1:21:1) is trained three times with different weight 
initialization with 1000 iterations of the static back propagation 
algorithm with momentum term.  After Comparing the 
performance measures like MSE,  NMSE and  r (regression) for 
6000 samples as Training ,2500 samples as testing and 1500 as 
cross validation as mentioned in table 2 and 3. It is observed that 
the FTLRNN results out perform well as compared to  MLPNN 
for all step (K=1,5,10,20,50,100) ahead prediction  

Table 2: Performance of   MLPNN on testing data 

  K (step) MSE NMSE r 
1 0.08750 0.5666 0.66035 
5 0.07634 0.55568 0.68434 

10 0.08331 0.54275 0.67991 
20 0.08580 0.62975 0.63454 
50 0.10079 0.74545 0.54593 

100 0.11397 0.85011 0.40191 
Table3: Performance of   FTLRNN on testing data 

K MSE NMSE r 

1 0.00113 0.00957 0.99545 
5 0.00202 0.01315 0.99356 

10 0.00335 0.02185 0.98910 
20 0.00632 0.04150 0.97982 
50 0.00927 0.06562 0.96663 
100 0.00117 0.07870 0.96000 

Then the proposed FTLRNN network model with gamma memory 
is trained for the best combinations resulted for training and 
testing exemplars. Then for the values on which the performance 
measures are optimum for the combination of training and testing 
samples ,it is experimented for 1000 to 40000 iterations  for each 
multi step (k=1,5,10,20,50,100) ahead prediction of chaotic 
duffing time series . It is observed that up to the 20 step ahead 
prediction the result of the forecasting process is practically 
perfect. From the figure 4 and figure 5 i.e   for the long step i e for 
100 step and 50- step ahead prediction the network output is 
slightly deviating from the desired output  but the results are 
better. Then in the steps of 10000 it is varied up to 40000 for out 
the optimum values of performance measures like MSE, NMSE 
and regression as shown in table 5 to 8 for 5,10.20.50 and 100-
step ahead prediction. It is observed that for higher values of 
epochs ,the output of the FTLRNN network closely follows the 
actual output not  only for short step (1,5,10) ahead prediction but 
also for long Step (20,50,100) ahead prediction.  

First 100 samples of  Chaotic Time series 100 step 
ahead
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Fig. 4 Desired output & Network Output for Testing data.100 step

First 100 samples of  Chaotic time series for 50 step ahead
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Fig. 5 Desired output & Network Output for Testing data. 50 step
First 100 samples of chaotic time series for 20 step ahead
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Fig. 6 Desired output & Network Output for testing data 20 step 
First 100 samples of chaotic time series for 20 step ahead
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Fig. 7 Desired output & Network Output for Testing data 10 step 

First 100 samples of chaotic time series 5 Step ahead
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Fig. 8 Desired output & Network Output for Testing data 5 step 

First 100 samples of Duffing  chaotic time series 1 step 
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Fig. 9 Desired output & Network Output for Testing data for 1-SAP 
step

Table 4:  For K=5, Epochs Variation above 10000 
No.of 
Epoch 

MSE
(Test)

r(Test) NMSE 
Test

Elapsed
time 
min. 

10000 0.00126 0.99603 0.0080 12.28 
20000 0.00124 0.99606 0.0078 24.47 
30000 0.00125 0.99609 0.00796 34.30 
40000 0.00118 0.99624 0.00759 40.20 

Table 5:  For K=10, Epochs Variation above 10000 
No. of 
Epochs

MSE
(Test)

r (Test) NMSE 
(Test)

Elapsed
time 
min. 

10000 0.00234 0.99265 0.01468 13.36 
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20000 0.00235 0.99261 0.01478 24.2 
30000 0.00233 0.99267 0.01461 25.21 
40000 0.00231 0.99276 0.1449 34.06 

Table 6  :For K=20 Epochs Variation above 10000 
No. of 
Epochs 

MSE
(Test)

r(Test) NMSE 
Test

Elapsed
time 
min. 

10000 0.00427 0.98645 0.0272 16.56 
20000 0.00217 0.99179 0.01643 29.44 
30000 0.00424 0.98654 0.02708 36.53 
40000 0.00437 0.98609 0.02791 50.38 

Table 7  For K=50 ,Epochs Variation above 10000 
No. of 
Epochs 

MSE
(Test)

r(Test) NMSE 
Test

Elaps
ed

time 
min. 

10000 0.00869 0.96676 0.06767 14.2 
20000 0.00797 0.96973 0.06208 18.3 
30000 0.00844 0.96744 0.06573 25.2 
40000 0.00893 0.96509 0.06949 30.3 

Table 8: For K=100 ,Epochs Variation above 10000 
No. of 
Epochs 

MSE
(Test)

r(Test) NMSE 
Test

Elapsed
time 
min. 

10000 0.00627 0.97987 0.04006 15.49 
20000 0.00619 0.98032 0.03959 20.33 
30000 0.00613 0.98022 0.03919 26.47 
40000 0.00589 0.98100 0.03767 31.54 

Sun spot time series
In case of the sunspot time series ,  the exhaustive 
experimentation is carried out for 6 months ahead prediction the 
performance measures are compared for  the  Multi layer 
perceptron (MLP), Feed forward network(FFN), Jorden Elman, 
Focussed time lagged neural network model (FTLRNN), radial 
basis function(RBF) , fully recurrent and partially recurrent neural 
network models  as shown in the graphs fig. 10 for M.S.E., Fig. 
11 for regression  r  . Also   the optimal parameter resulted for   
fully recurrent neural network with   tanh axon model is listed in 
table 9.

Table 9 Parameters of fully recurrent network. 
Sr.
no.

Parameter Hidden 
Layer

Output 
Layer

1 Processing 
elements 

15 1 

2 Transfer function tanh tanh 
3 Learning rule Momentum momentum 

4 Step Size 1 0.1 
5 Momentum 0.8 0.8 
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 Fig. 10   Performance of various networks with regards to 
M.S.E for 6 month ahead  
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 Fig. 11 Performance of various networks with regards to r 
for 6 month ahead
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Fig. 12 Performance of various Axons with regards to M.S.E for 6 
month ahead prediction  
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Fig. 13 Performance of various Axons with regards to r for 6 month 
ahead prediction
Then the proposed Fully recurrent neural network model with 
tanh axon is trained for  the best combinations resulted for  
different tan h, Gamma axon ,Laggere axon , TDNN axon, 
sigmoid  and linear sigmoid axon of recurrent model  and the 
various performance measures are compared as shown in graphs 
Fig. 12 for  M.S.E. and  Fig.13 for  r  for 6 -month ahead 
prediction. From the plots it is resulted that for tan h axon the 
performance measures value   are significant as compared to other 
axons. Then for this configuration of the model for tanh axon 
different combinations of training and testing samples is varied 
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keeping cross validation constant to find out the optimal value of 
performance measures for the combination of training & testing 
samples. The results are as shown in a graph of Fig. 14 and Fig.  
15 with regards to M.S.E. and regression r for 1, 6,12,18,24 month 
ahead prediction. For 1 month and 6 month ahead the results are 
optimum for training samples 60% and testing 25%, for 12 month 
ahead the results are optimum for training samples 70% and 
testing 15%, for 18 and 24 month ahead the results are optimum 
for training samples 80% and testing 5%. Then for these 
combinations   the number of Epochs is varied from 2000 to 
20000 to get for which number of epochs the performance values 
are optimum. The results are plotted as shown in figure 17 with 
regards to r for all months,  fig. 18 for 1 and 6 month ahead  fig. 
19 for 12,18, and 24 month ahead with regards to N.M.S.E , fig 27 
for 1 and 6 month ahead and fig 26 for 12, 18 & 24 month ahead 
with regards to M.S.E. Also the graph between the desired output 
and actual output are plotted for First 300 samples on testing data 
set as shown in figure 19 for 1 month ahead, figure 20 for 6 month 
ahead, figure 21 for 12- month ahead, and figure 22 for 24 month 
ahead. It is observed that the output of proposed network closely 
follows the actual output, 
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First 300 samples for monthly sunspots time series for 1 step ahead
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Fig. 19 First 300 samples of  Desired output Vs Actual output 
for 1- month ahead for optimized network  

First 300 samples of monthly sunspot series for 6 step ahead
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Fig. 20 First 300 samples of Desired output Vs Actual output 
for 6- month ahead for optimized network

First 300 samples of monthly sunspots series for 12 step ahead
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Fig. 21 First 300 samples of   Desired output Vs Actual output 
for 12- month ahead for optimized network
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First 100 samples of sunspot time series for 18 step
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Fig. 22 First 300 samples of   Desired output Vs Actual output 
for 18-month ahead for optimized network

First 100 samples of monthly sunspots time series for 24 step ahead
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 Fig.23 First 300 samples of   Desired output Vs Actual output 
for 24- month ahead for optimized network 

6 CONCLUSION 
It is seen that focused time lagged recurrent network with gamma 
memory is able to predict the chaotic duffing   time series so for 
as long distant predictions are quite well in comparison with the 
Multilayer preceptron (MLP) . Static NN configuration such as 
MLP NN based model is failed to cope up with the underlying 
nonlinear dynamics. It is seen that MSE, NMSE of the proposed 
dynamic model for testing data set as well as for training data set 
are significant than those of static MLP NN model . In addition it 
is   also   observed  that the correlation coefficient of this model 
for testing and training exemplars are much higher and closed to 
unity for the multi step (k=1,5,10,20,50,100) ahead prediction. For 
the static MLP structure for 50 step ahead prediction the value of 
regression is 0.54593 and MSE is 0.10079 for the proposed model 
it is 0.96663   and MSE it is 0.00927. Similarly for static MLP for 
100- step ahead the value of regression is 0.40191 and MSE it is 
0.11397 and for the proposed FTLRNN the value of regression is 
0.96000 and MSE it  is 0.00117. Next for which training and 
testing samples the performance measures are optimum for that   
the number of epochs are varied from 2000 onwards to achieve 
more optimum results as shown in the figure 10 to 14. Then above 
20000 epochs are varied in the steps of 10000as shown in the 
tables 10 to 14 for all steps. It is resulted from the experiments 
that for varying the   higher values of iteration ( i.e 10000 to 
40000) the proposed model performs significantly better and the 
performance measures values like MSE, NMSE  are reduced and 
the Correlation coefficient (r) values are approaching  closed to 
the unity for all the steps  as mentioned  in the tables from table10 
to 15. For the 100 step ahead prediction the value correlation 
coefficient is 0.96000 for 1000 iterations and when the number of 
iteration is increased up to the value 40000 then correlation 
coefficient is increases to 0.98100 which is closed to the unity. 
Hence the focused time lagged recurrent neural network with 
gamma memory filter has out performed the static MLP based 
neural network significantly for short step K=1,5,10 and for long 
step K=20,50,100 ahead prediction as well as it is found that for 
increasing value of the number of found epochs steps 
(k=1,5,10,20,50,100) the performance measures for any optimum. 
and the proposed network output closely follows the actual output  
for all the steps.   

For the monthly sun spot time series ,It is observed that  fully 
recurrent neural  network model with tanh axon learns the 
dynamics of the system for 1, 6 ,12, 18 and 24- month ahead 
prediction quite well  as compared with  the  Static MLP, Feed 
forward , FTLRNN, Jorden Elman and partially neural network 
model. It is seen that MSE, NMSE of the proposed dynamic 
model for testing data set as well as for training data set are 
significant. . In addition it is   also   observed  that the correlation 
coefficient of this  model for testing and training exemplars are 
much higher and closed to unity for the multi step 
(k=1,6,12,18,24) ahead prediction.  Then for which combination 
training and testing samples the results are optimum for that 
combination the proposed model is trained for 2000 to 20000 
epochs for all the month ahead prediction and the results are 
plotted with regards to regression r. It is observed that for 12 
month ahead prediction for 2000 epochs the value of  M.S.E  is 
0.01090 and correlation coefficient r  is  0.90350 and it is 
improved for M.S.E to  0.00685 and correlation coefficient r is 
0.92798 for 8000 epochs , for 18 month ahead prediction for 2000 
epochs the value of  M.S.E  is 0.01355 and correlation coefficient    
is  0.81103 and it is improved for M.S.E to  0.00684 and 
correlation coefficient  is 0.91093 for 10000 epochs and for 24- 
months ahead prediction for 2000 epochs the value of  M.S.E  is 
0.02133 and  correlation coefficient r  is  0.73131 and it is 
improved for M.S.E to  0.00824 and correlation coefficient    to 
0.88460 for 10000 epochs which is closed to unity.  Also the 
graph between the desired output and actual output are plotted 
for1, 6, 12, 18 and 24-month ahead prediction. It is visually 
inspected that that the output of proposed neural network closely 
follows the actual output,
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