
Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

20

A Review: A New Approach to spread, Concurrent,
and Independent Access to Encrypted Cloud

Databases
Madhuri R. Rajput1, Ankush Narkhede 2

1 Post Graduate Student, Department of CE, Padm.Dr. V.B.K.C.O.E., Malkapur, S.G.B.A. University, Maharashtra,
India

2 Asst. Professor, Department of CSE, Padm. Dr. V.B.K.C.O.E., Malkapur, S.G.B.A. University, Maharashtra, India
1madhurirajput495@gmail.com

2ankushnarkhede1989@gmail.com

Abstract — The data under cloud provider is guarantee

of security and availability for remaining data in use or not in use.
There are numerous services, while private data solution for the
database as ideal services is still underdeveloped. They advise
novel architecture and design that combine cloud database
services with private data and chance to implement simultaneous
operation on encrypted report. It is the solution for supporting
geographically circulated user to link directly to an encrypted
cloud database and to implement simultaneous and independent
operation as well as those improves the database structure. The
present architecture has the advantages of removing middle
proxies that limit the elasticity, availability, and scalability
properties that are belonging naturally in cloud based solution.
The effectiveness of present architecture is valuated through
theoretical study and vast experimental conclusion based on
prototype execution subject to the TPCC standard basis for
different number of user and network latency.

Keywords-DBaaS, SQL, cloud, database

I. INTRODUCTION

In a cloud situation, where significant data under
infrastructures of untrusted third parties, ensure information
privacy is of paramount value [2], [3]. This necessity imposes
apparent information management choices: original basic
information has to be reachable only by trusted parties that do
not contain cloud providers, mediators, and Internet; in any
untrusted environment, information has to be encrypted.
Agreeable these goals have different levels of complication
depending on the type of cloud service. There are numerous
solutions ensuring privacy for the storage as a service pattern
(e.g., [4], [5], [6]), while guaranteeing privacy in the database
as a service (DBaaS) model [7] is at rest an open research
region. In this situation, we suggest safe DBaaS as the first
resolution that allows cloud tenants to get complete benefit of
DBaaS qualities, such as availability, reliability, and elastic
scalability, not including exposing unencrypted data to the
cloud supplier.

The structural design was aggravated by a threefold aim:
to permit many, free, and geologically distributed customers
to perform parallel operations on encrypted information,
containing SQL statements that modify the database
formation; to conserve information privacy and reliability at

the customer and cloud stage; to remove any middle server
among the cloud customer and the cloud supplier. The chance
of combining availability, elasticity, and scalability of a
classic cloud DBaaS with data privacy is established through
a prototype of safe Dabs that supports the execution of
parallel and independent operations to the remote encrypted
record from many geographically spread customers as in any
unencrypted Dbase setup. To get these goals, protected
DBase integrates presented cryptographic schemes,
separation mechanisms, and novel strategy for management
of encrypted metadata on the untrested cloud database. In
this context, we cannot change completely homomorphism
encryption schemes [8] because of their unnecessary
computational difficulty. The safe DBase design is adapted to
cloud platforms and does not establish any mediator proxy or
adviser server between the customer and the cloud supplier.
Removing any trusted middle server allows safe DBase to get
the same availability, reliability, and elasticity stages of a
cloud DBase. Other proposals (e.g., [9], [10],[11], [12]) based
on middle server(s) were considered impossible for a cloud-
based solution as any proxy represents a single point of
breakdown and a system block that limit the key profit (e.g.,
scalability, availability, and elasticity) of a record service
deployed on a cloud proposal. Unlike safe DBase,
architectures relying on a trusted middle proxy do not support
the most characteristic cloud state where geographically
discrete customers can parallel concern read/write operations
and data construction modifications to a cloud database. A
huge set of experiments based on actual cloud platforms
express that safe DBase is instantly valid to any DBMS
because it requires no modification to the cloud record
services. added studies where the planned design is focus to
the TPC-C standard for special numbers of clients and
network latencies show that the presentation of parallel read
and write operations not modifying the safe DBase database
construction is equivalent to that of unencrypted cloud
record. Workloads as well as modifications to the record
construction are also supported by safe DBase, but at the
price of overheads that seem adequate to get the desired level
of data privacy. The motivation of these outcomes is that
network latencies, which are typical of cloud scenarios, tend

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

21

to cover the presentation costs of data encryption on response
time.

II. LITERATURE REVIEW

Safe DBaaS supplier many unique features that
distinguish it from earlier work in the field of safety for
secluded database services. It guarantees information privacy
by allowing a cloud record server to perform parallel SQL
operation (not only read/write, but also development to the
record configuration) above encrypted information. It
provides the same availability, elasticity, and scalability of
the unique cloud DBaaS because it does not need any middle
server. Reply times are affected by cryptographic expenses
that for most SQL operations are covered by network
latencies. Many customers, may be geographically spread,
can access parallel and alone a cloud database service. It does
not need a trusted agent or a trusted proxy because tenant
information and metadata stored by the cloud database are
constantly encrypted. It is compatible with the nearly all
popular relational record servers, and it is appropriate to
dissimilar DBMS implementations because all adopted
solutions are record doubter. Cryptographic file systems and
safe storage solutions represent the previous works in this
field. In such a way, they avoid one cloud supplier to read its
part of information, but data can be reconstructed by
colluding cloud supplier. A step ahead is planned in [16] that
make it achievable to perform range queries on information
and to be robust against collusive supplier. Safe DBaaS
differs from these solutions as it does not need the use of
many cloud suppliers, and makes use of SQL-aware
encryption algorithms to maintain the execution of most
general SQL operations on encrypted information. Safe
DBaaS relates more closely to works using encryption to
guard data managed by entrusted record. In such a case, a
main topic to address is that cryptographic techniques cannot
be naı¨vely apply to standard DBaaS because DBMS can
only perform SQL operations above plaintext information.
Some DBMS engines offer the option of encrypting
information at the file system stage through the so-called
Transparent. Information Encryption feature. This quality
makes it possible to construct a trusted DBMS above
entrusted storage. However, the DBMS is trusted and
decrypts information ahead of their use. Hence, this approach
is not valid to the DBaaS background considered by safe
DBaas, because we guess that the cloud supplier is
untrusted.Other solutions, such as [19], allow the effecting of
operations above encrypted information. These approaches
protect information privacy in scenarios where the DBMS is
not trusted; however, they need a modified DBMS engine and
are not compatible with DBMS software used by cloud
suppliers. On the other hand, safe DBaaS is compatible with
standard DBMS engines, and allows tenants to construct safe
cloud record by leveraging cloud DBaaS services previously
obtainable. For this reason, safe DBaaS is more correlated to
[10] and [9] that protect data privacy in entrusted DBMSs
through encryption techniques, permit the implementation of
SQL operations above encrypted information, and are

compatible with general DBMS engines. However, the
construction of these solutions is based on an middle and
trusted proxy that mediates any interface between each
customer and the entrusted DBMS server. The approach
planned in [9]by the authors of the DBaaS model [8] works
by encrypting block of information instead of each
information point. Whenever a information article that
belongs to a block is necessary, the trusted proxy require to
improve the complete block, to decrypt it, and to clean out
unnecessary information that belong to the same building
block. Since a consequence, this design choice requires heavy
modifications of the unique SQL operations formed by each
customer, thus causing important overheads on both the
DBMS server and the trusted proxy. Another works [11], [12]
introduce optimization and simplification that expand the
subset of SQL operators maintained by [9], but they share the
same proxy-based design and its essential issues. On the other
hand, safe DBaaS permits the implementation of operations
above encrypted information through SQL-aware encryption
algorithms. This method, primarily proposed in Crypt DB [8],
makes it achievable to perform operations above encrypted
information that are analogous to operations above plaintext
information In several cases, the doubt plan executed by the
DBMS for encrypted and plaintext information is the equal.
The trust on a trusted proxy that characterize [11] and[10]
facilitates the execution of a safe DBaaS, and is proper to
multitier web function, which are their major focus. Though,
it causes numerous drawbacks. As the proxy is trusted, its
applications cannot be outsourced to an entrusted cloud
supplier. so, the proxy is meant to be implemented and
managed by the cloud occupant. Availability, scalability, and
elasticity of the entire safe DBaaS service are then
surrounded by availability, scalability, and elasticity of the
trusted proxy, that becomes a particular spot of breakdown
and a organization blockage. as high availability, scalability,
and elasticity are between the primary reasons that lead to the
implementation of cloud services, this restriction hinders the
applicability of [9] and [8] to the cloud database situation.
Safe DBaaS solves this difficulty by letting customers attach
directly to the cloud DBaaS, with no require of other middle
part and without initiating latest bottlenecks and single points
of breakdown. A proxy-based design requiring that any
customer operation should pass throughout one middle server
is not appropriate to cloud-based scenarios, in which several
customers, normally spread between dissimilar locations,
require parallel access to information stored in the similar
DBMS. On the other hand, safe DBaaS supports spread
customers issuing independent and parallel SQL operations to
the similar database and possibly to the similar facts. Safe
DBaaS extends our primary studies viewing that information
stability can be sure for a few operations by leveraging
concurrency separation mechanisms implemented in DBMS
engines, and identifying the least separation level essential
for those statements. Moreover, we now consider
theoretically and experimentally a whole set of SQL
operations represented by the TPC-C standard benchmark, in

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

22

addition to several customers and dissimilar customer-cloud
network latencies that were never evaluated in the text.

III.RELATED WORK

1. ARCHITECTURE DESIGN
 Safe DBaaS is designed to permit several and

independent customers to join directly to the entrusted cloud
DBaaS without any middle server. Fig. a. explains the overall
design. We assume that a tenant organization obtain a cloud
database service from an entrusted DBaaS supplier. The
tenant then install one or more machines (Client 1 through N)
and installs a safe DBaaS customer on each of them. This
customer permit a client to join to the cloud DBaaS to
manage it, to read and write information, and even to
generate and modify the database tables after formation. We
imagine the same safety model that is generally accept by the
literature in this field (e.g., [9], [10]), where occupant
consumers are trusted, the network is entrusted, and the cloud
supplier is honest-but-curious, so as to , cloud service
operations are accomplished properly, but tenant data
confidentiality is at danger. For these cause, tenant
information, data construction, and metadata should be
encrypted previous to exit from the customer. A thorough
presentation of the safety model accepted and obtainable in
the online supplemental matter.

Figure 1. Architecture Design
The information handled by safe DBaaS contains

plaintext information, encrypted information, metadata, and
encrypted metadata. Plaintext information consists of data
that a tenant wants to store and process slightly in the cloud
DBaaS. To avoid an entrusted cloud supplier from violating
privacy of tenant information stored in plain form, safe
DBaaS accept several cryptographic methods to change
plaintext information into encrypted tenant information and
encrypted tenant information construction because even the
names of the tables and of their columns should be encrypted.
Safe DBaaS customers create also a set of metadata
containing of data essential to encrypt and decrypt
information as well as administration information. Still
metadata are encrypted and store up in the cloud DBaaS. Safe
DBaaS go away from existing architectures that store up only
tenant information in the cloud database, and keep metadata
in the client machine [10] or crack metadata in the cloud
database and a trusted proxy [9]. While considering scenarios

where several customers can access the equal database
parallel, these earlier results is quite wasteful. For example,
saving metadata on the customers would need onerous
methods for metadata organization, and the practical
impossibility of allowing several customers to accept cloud
database services alone. Results based on a trusted proxy are
extra feasible, but they initiate a system blockage that
decreases accessibility, elasticity, and scalability of cloud
record services. Safe DBaaS suggest a dissimilar approach
where all information and metadata are save in the cloud
database. Protected DBaaS customers can recover the
essential metadata from the entrusted database during SQL
statements, so that several cases of the safe DBaaS customer
can access to the entrusted cloud database alone with the
assurance of the similar availability and scalability properties
of characteristic cloud DBaaS. Encryption plans for tenant
information and innovative results for metadata management
and storage are explain in the following two sections.

2. Data Management
We imagine that tenant information is stored in a

relational database. We have to save the privacy of the stored
information and still of the database construction because
table and column names can yield data regarding saved facts.
We differentiate the strategies for encrypting the database
structures and the tenant information. Encrypted tenant
information are stored through safe tables into the cloud
database. To permit visible execution of SQL statements,
every plaintext table is changed into a protected table because
the cloud database is entrusted. The name of a secure table is
produced by encrypting the name of the equivalent to
plaintext table. Table names are encrypted by means of the
similar encryption algorithm and an encryption key that is
well-known to all the safe DBaaS customers. Hence, the
encrypted name can be calculated from the plaintext name.
On the other hand, column names of protected tables are
randomly created by protected DBaaS; hence, still if
dissimilar plaintext tables have columns withThe similar
identity, the names of the columns of the parallel safe tables
are dissimilar. This design choice recover privacy by
avoiding an adversarial cloud database from imagines
relations within dissimilar protected tables through the
recognition of columns having the same encrypted name.
Protected DBaaS permits tenants to leverage the
computational authority of entrusted cloud databases by
creating it probable to perform SQL statements remotely and
above encrypted tenant information, while distant processing
of encrypted information is possible to the extent permitted
by the encryption policy. To this use, protected DBaaS
expand the idea of data type, that is related with every
column of a Traditional database by beginning the protected
kind. By selecting a protected kind for every column of a
protected table, a tenant able to define fine-grained
encryption rules, thus reaching the preferred trade-off among
facts privacy and remote processing capacity. A protected
kind is composed of three fields: data kind, encryption kind,
and field confidentiality. The mixture of the encryption kind
and of the field privacy factors defines the encryption rule of

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

23

the related column. The data category explain the kind of the
plaintext data (e.g. int , varchar). The encryption kind
recognizes the encryption algorithm which is used to cipher
every the facts of a column. It is select within the algorithms
hold by the protected DBaaS execution. As in [8], protected
DBaaS leverages many SQL-aware encryption algorithms
that permit the implementation of statements above encrypted
facts. It is significant to examine that every algorithm
supports only a subset of SQL operators. When Secure
DBaaS creates an encrypted table, the data type of every
column of the encrypted table is discovered by the encryption
algorithm used to encode tenant information. Two encryption
algorithms are defined matched if they produce encrypted
information that need the similar column data kind. Since a
default performance, safe DBaaS uses a dissimilar encryption
input for every column; so, equivalent values stored in
dissimilar columns are changed into dissimilar encrypted
representation. This architecture selection assurance the
maximum confidentiality stage, since it avoids an adversarial
cloud supplier to recognize facts that are continual in.
encryption key. safe DBaaS suggest three field confidentiality
aspect:

a. Column (COL) is the defaulting privacy stage that
must be use when SQL statements work on one column; the
charge of this column are encrypted throughout a accidentally
created encryption key that is not utilize by any another
column.

b. Multicolumn (MCOL) must be utilized for columns
referenced by link operators, foreign keys, and another
operations containing two columns; the two columns are
encrypted throughout the same key.

c. Database (DBC) is suggested when operations contain
several columns; in this case, it is suitable to utilize the
particular encryption key that is created and completely
shared with every columns of the database distinguish by the
similar protected kind.The option of the field confidentiality
stages creates it achievable to perform SQL statements over
encrypted information while permitting a tenant to reduce key
distribution.
3. Metadata Management

Metadata created by protected DBaaS include all the data
that is essential to handle SQL statements above the
encrypted database in a mode visible to the consumer.
Metadata management policies represent an original plan
because protected DBaaS is the first design storing all
metadata in the entrusted cloud database collectively with
encrypted tenant information. Protected DBaaS utilized two
types of metadata.

a. Database metadata are correlated to the entire
database. There is only one occasion of this metadata kind for
every database.

b. Table metadata are related with secure table. Every
table metadata include all information that is essential to
encrypt and decrypt facts of the related protected table.
Database metadata include the encryption key that are utilize
for the protected kind containing the field isolation set-to

database. The organization of a table metadata is shown in
Figure. 2. as below

 Figure 2.Structure of metadata
 Table metadata include the name of the correlated
protected table and the unencrypted name of the correlated
plaintext table. Furthermore, table metadata contain column
metadata for all column of the correlated protected table.
Every column metadata include the following data.
a. Plain name: - the name of the parallel column other
plaintext table.
b. Coded name: - the name of the column of the protected
table. This is the single information that links a column to the
parallel plaintext column since column names of protected
tables are accidentally created.
c. Secure type: - the secure kind of the column, as defined in
some above parts. This permits a protected DBaaS consumer
to be informed regarding the data type and the encryption
strategies connected with a column.
d. Encryption key: -the key utilized to encrypt and decrypt
the every information saved in the column.
4. OPERATIONS

In this section, we summarize the arrangement setting
operations holding out by a database administrator (DBA),
and we explain the effecting of SQL actions on encrypted is
as.

a. Setup Phase:-We explain how to initialize a protected
DBaaS design from a cloud database service obtained by a
tenant from a cloud supplier. We imagine that the DBA
generates the metadata storage table that at the starting
includes only the database metadata, . The DBA populate the
database metadata during the protected DBaaS customer by
utilizing randomly created encryption keys for any mixture of
data types and encryption types, and saves them in the
metadata storage table behind encryption during the master
key. Then, the DBA spreads the master key to the valid
consumer. Consumer access manage strategies are
administrated by the DBA throughout a few standard facts
control language as in some unencrypted database. In the next
steps, the DBA generates the tables of the encrypted
database. It should be consider the three field privacy aspects
(COL, MCOL, and DBC) initiates in the above section. Let
us explain this stage by referring to a easy but representative
example shown in Figure. 3, there are three safe tables as
ST1, ST2, and ST3. Every table STi (i ¼ 1; 2; 3) contains an

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

24

encrypted table Ti that includes encrypted tenant information,
and a table metadata Mi. (though, in certainty, the names of
the columns of the protected tables are at random created; for
the sake of simplicity, this figure use them throughC1-CN.)

For example, if the database has to maintain a attach
statement within the value of T1.C2 and T2.C1, the DBA
should use the MCOL field privacy for T2.C1 that references
T1.C2 (solid arrow). In such a way, safe DBaaS can recover
the encryption key particular in the column metadata of
T1.C2 from the metadata table M1 and can utilize the similar
key for T2.C1. The solid arrow from M2 to M1 indicates that
they openly distribute the encryption algorithm and the key.
As operations (e.g., arithmetical, order relationship) involve
more than two columns, it is suitable to accept the DBC field
privacy. This has a double advantage: we can utilize the
particular encryption key that is created and completely
shared within every the columns of the database feature by
the similar protected kind; we boundary possible consistency
topics in some situations characterized by parallel consumers

Figure 3.Management of Encryption key

For example, the columns T1.C3, T2.C3, and T3.C1 in
Figure.3 distribute the similar protected kind. So, they
indication the database metadata, as shown by the dashed
line, and utilize the encryption key related with their
information and encryption kinds. When they have the
similar information and encryption kinds, T1.C3, T2.C3, and
T3.C1 can utilize the similar encryption key still if no direct
reference survives among them. The database metadata
previously include the encryption key K related with the
information and the encryption kinds of the three columns,
since the encryption keys for every combinations of
information and encryption kind are produced in the
initialization stage. Hence, K is utilize as the encryption input
of the T1.C3, T2.C3, and T3.C1 columns and copied in M1,
M2, and M3.
 b. Sequential SQL Operations:-We explain the SQL
operations in protected DBaaS by think an early easy
scenario in which we imagine that the cloud database is

accessed by one consumer. Our aim here is to underline the
core processing steps; so, we do not take into account
presentation optimizations and concurrency issues that will
be discussed in below the initial correlation of the consumer
with the cloud DBaaS is for confirmation purposes. Protected
DBaaS relies on standard confirmation and permission
mechanisms supply by the original DBMS server. After the
confirmation, a consumer cooperates with the cloud database
during the protected DBaaS consumer. Protected DBaaS
evaluates the unique operation to recognize which tables are
involved and to improve their metadata from the cloud
database. The metadata are decrypted throughout the master
key. Converted operations include neither plaintext database
nor tenant information. However, they are legal SQL
operations that the protected DBaaS customer can issue to the
cloud database. Converted operations are then performed by
the cloud database above the encrypted tenant data. Since
there is a one to-one correspondence in plaintext tables and
encrypted tables, it is possible to avoid a trusted database
consumer from accessing or modifying a few tenant facts by
granting restricted rights on a few tables. Consumer rights
can be handled by the entrusted and encrypted cloud
database. The outcomes of the translated doubt that contains
encrypted tenant facts and metadata are gain by the protected
DBaaS consumer,decrypted, and send to the consumer.
c. Concurrent SQL Operations
The support to parallel implementation of SQL statements
issued by several independent consumers is one of the most
important profits of protected DBaaS with respect to state-of-
the-art results. Our design should guarantee consistency
within encrypted tenant facts and encrypted metadata since
corrupted or outdated metadata would avoid consumers from
decipher encrypted tenant data resulting in permanent
information losses. Now, we mention the significance of
distinguishing two classes of statements that are maintained
by protected DBaaS: SQL operations not reasoning
modifications to the database configuration, such as read,
write, and update; operations containing alterations of the
database configuration throughout formation, elimination,
and modification of database tables. In situations
characterized by a static database configuration, protected
DBaaS permit customers to issue parallel SQL commands to
the encrypted cloud database exclusive of begining any fresh
consistency topics with respect to unencrypted databases.
Once metadata retrieval, a plaintext SQL command is
changed into one SQL command working on encrypted
tenant data.

IV. CONCLUSIONS
We study an innovative design that assurances

confidentiality of data stored in public cloud databases.
Dissimilar state-of-the-art approaches, our result does not
depend on a middle proxy that we consider a only one point
of breakdown and a bottleneck restrictive availability and
scalability of characteristic cloud database services. A huge
part of the study contains results to support parallel SQL
operation on encrypted data copied by heterogeneous and
probably geographically dispersed customers. The study

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

25

design does not need changes to the cloud database, and it is
instantly applicable to existing cloud DBaaS. There are no
theoretical with practical borders to extend the outcomes to
another platform and to contain new encryption algorithms. It
is worth examineing that practical solutions based on the
TPC-C standard benchmark indicate that the presentation
collision of data encryption on response time become
unimportant. In particular, simultaneous read and write
processes that do not change the construction of the
encrypted database cause slightly overhead. Dynamic
situations characterized by simultaneous modifications of the
database design are supported, but at the cost of high
computational. These presentation producees open the space
to future development we are investigating.

REFERENCES
[1] Luca Ferretti, Michele Colajanni, and Mirco Marchetti

“Distributed, Concurrent, and Independent Access to Encrypted Cloud
Databases” IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

[2] M. Armbrust et al., “A View of Cloud Computing,” Comm. of
the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[3] W. Jansen and T. Grance, “Guidelines on Security and Privacy in
Public Cloud Computing,” Technical Report Special Publication 800-
144, NIST, 2011.

[4] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W. Felten, “SPORC:
Group Collaboration Using Untrusted Cloud Resources,”Proc. Ninth
USENIX Conf. Operating Systems Design and mplementation, Oct.
2010.

[5] J. Li, M. Krohn, D. Mazie`res, and D. Shasha, “Secure Untrusted Data
Repository (SUNDR),” Proc. Sixth USENIX Conf. Opearting Systems
Design and Implementation, Oct. 2004.

[6] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M.
Walfish, “Depot: Cloud Storage with Minimal Trust,” ACM Trans.
Computer Systems, vol. 29, no. 4, article 12, 2011.

[7] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra, “Providing Database a
Service,” Proc. 18th IEEE Int’l Conf. Data Eng., Feb. 2002.

[8] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”
Proc. 41st Ann. ACM Symp. Theory of Computing, May 2009.

[9] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H. Balakrishnan,
CryptDB: Protecting Confidentiality with Encrypted Query
Processing,” Proc. 23rd ACM Symp. Operating Systems Principles,
Oct. 2011.

[10] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over Encrypted Data in the Database-Service-Provider Model,” Proc.
ACM SIGMOD Int’l Conf. Management Data, June 2002.

[11] J. Li and E. Omiecinski, “Efficiency and Security Trade-Off in
Supporting Range Queries on Encrypted Databases,” Proc. 19th Ann.
IFIP WG 11.3 Working Conf. Data and Applications Security, Aug.
2005.

[12] E. Mykletun and G. Tsudik, “Aggregation Queries in the Database-as-
a-Service Model,” Proc. 20th Ann. IFIP WG 11.3 Working Conf. Data
and Applications Security, July/Aug. 2006.

[13] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwally, “Database
Management as a Service: Challenges and Opportunities,” Proc. 25th
IEEE Int’l Conf. Data Eng., Mar.-Apr. 2009.

[14] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, and R
Motwani, “Distributing Data for Secure Database Services,” Proc.
Fourth ACM Int’l Workshop Privacy and Anonymity in th Information
Soc., Mar. 2011.

[15] A. Shamir, “How to Share a Secret,” Comm. of the ACM, vol. 22, no.
11, pp. 612-613, 1979.

[16] M. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z. Ganjei, “AS5 A
Secure Searchable Secret Sharing Scheme for Privacy Preserving
Database Outsourcing,” Proc. Fifth Int’l Workshop Autonomou and
Spontaneous Security, Sept. 2013. “Oracle Advanced Security,” Oracle
Corporation, http://www.
oracle.com/technetwork/database/options/advance security, Apr. 2013..

[17] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting Security and
Consistency for Cloud Database,” Proc. Fourth Int’l Symp.Cyberspace
Safety and Security, Dec. 2012.

[18] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A Critique of Ansi Sql Isolation Levels,” Proc. ACM SIGMOD, June
1995.

[19] “Transaction Processing Performance Council,” TPC-http://
www.tpc.org, Apr. 2013.

[20] “Xeround: The Cloud Database,” Xeround, http://xeround.com,

[21] “Postgres Plus Cloud Database,” EnterpriseDB, http://
enterprisedb.com/cloud-database, Apr. 2013.

[22] “Windows Azure,” Microsoft corporation, http://www.
windowsazure.com, Apr. 2013.

[23] “Amazon Elastic Compute Cloud (Amazon Ec2),” Amazon Web
Services (AWS), http://aws.amazon.com/ec2, Apr. 2013.

[24] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha”
“Making Snapshot Isolation Serializable,” ACM Trans. Database
Systems, vol. 30, no. 2, pp. 492-528, 2005.

[25] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-Preserving
Encryption Revisited: Improved Security Analysis and Alternative
Solutions,” Proc. 31st Ann. Conf. Advances in Cryptology (CRYPTO
’11), Aug. 2011.

[26] “IP Latency Statistics,” Verizon, http://www.verizonbusiness
com/about/network/latency, Apr. 2013

