
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

145

Mobile Application Development for Multi-platform
Deployment

Ms. Pranita G. Malve
Department of Computer Science & Engineering

Prof. Ram Meghe Institute of Technology and Research, Amravati, India
Email: pranitamalve@gmail.com

Guide: Prof. S. R. Gupta

ABSTRACT

One of the biggest challenges to
application development for mobile
platforms is due to device
fragmentation. Porting a single
application on different mobile
platforms multiplies expenses and is
time taking. We aim to develop a
framework to automatically transform
an application written in a particular
mobile platform into an application that
can be ported to other mobile platforms.
We intend to develop a graphical
modeling language which is specific to
mobile platforms and come up with
algorithms to generate the application
source code from the graphical model.

1.0 PROBLEM STATEMENT

Today’s current mobile device
marketplace contains many different
software platforms such as Windows
Mobile, Symbian, Palm, Java Mobile,
IPhone and Android. Many of the
applications today are only available on
the platform they are developed for.
Trying to develop the same application
across all platforms creates expensive
problems when individually porting the
code to each platform. Most of the
development time for a mobile project is
spent working on code porting and
deployment instead of the initial
development. So, we are researching on
developing a framework that would

allow applications to be written once
and deployed to multiple mobile
platforms.

1.1 Business Motivation

There are three main reasons behind
this developing this framework to
achieve cross-platform portability of the

mobile applications. Firstly, the new
approach will cut down on
development time. It will reduce the
amount of time spent porting the
application as well as debugging the
application on each platform which will
make the development more efficient.
Secondly, new software will be available
on different devices and thus increasing
its availability and profitability. Thirdly,
Developers will be able to focus on
content, functionality and features
instead of fixing issues with the porting
and deployment of the application.

1.2 Research Problem

We need to separate the business logic
from the actual implementation. We are
researching on developing a graphical
modeling language with which we can
model the business logic and
application requirements independent
of any constraints imposed by a
particular mobile platform. After-wards
we need to develop platform specific
algorithms for the conversion of
graphical model into code.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

146

2.0 LITERATURE REVIEW

While developing the cross-platform
portability for mobile applications, the
major concern is to make the mobile
applications work in the heterogeneous
environments. Some studies to be
considered in this research are Object
Migration in heterogeneous
environments, different
implementations of Middleware to
migrate with an adaptation of its state
and implementation at runtime.

Systems, which rely on language-
dependent serialization formats, do not
support heterogeneous environments.
But Peter and Guyennet [4] suggest some
approaches to achieve object mobility
using CORBA in large-scale systems.
Even good amount of work has been
done on Web service object migration
by Hammerschmidt and Linnemann [5].
However, this migration in the system is
based on Java serialization, which does
not support dynamic adaptation of state
and implementation code.

As Hallsteinsen et. al. [6] suggested a
framework MADAM, a work on flexible
planning-based middleware for context-
aware mobile application. This
component framework has applications
which are composed of components.
These components can be reconfigured
as per their context. Their adaptation is
restricted to a custom component
framework.

Kunze et. al. [2] suggested DEMAC
which focuses on distributed execution
of mobile processes using process
description language. This is interpreted
by infrastructure components for
process execution. But, DEMAC does

not support self-adaptive migration as
only process description is transferred.
Since it does not support an MDA
development approach, parsing mobile
process at each step leads to higher
processing resources.

Ishikawa et al. [3] describe the mobile
processes with BPEL. They describe a
proprietary behavior description for
mobile agent systems, which can
migrate Web services on other
machines. However, context is not
supported sufficiently.

Schmidt and Hauck [1] present a design
of SAMProc, a middleware for self-
adaptive mobile processes in
heterogeneous environments. This
supports complete migration of services
and allows adaptation of the application
to the current device’s application
context. The self-adaptive mobile
processes allow the abstract
specification of an application’s
functionality as well as interactions and
deployment aspects.

3.0 SOLUTION APPROACHES

The solution approach to accomplish the
cross-platform portability of mobile
application would include application
development using a Model-driven
Architecture approach. This would
include determining the software
incompatibility set between different
platforms and then developing Plug-ins
specific for each platform so as to meet
the software incompatibilities. So, the
applications would be developed using
the common set of software
functionality existing between different
mobile platforms and then wiring these
modules with platform specific Plug-ins
to produce the full-fledged application.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

147

The developer has just to code the
application logic, interaction and
deployment aspects, and functionality
in each of the component.

Figure I: Code generation process for

cross-platform development.

These components would specifically be
coded using a platform-independent set
of libraries. Then, the mobile processes
are converted into adaptive processes by
the Middleware part. This part may
include some kind of MDA language or
a scripting language like BPEL to
convert the processes into self-adaptive
objects that are able to migrate over the
platforms. These applications with
additions of link libraries from the plug-
ins would automatically generate a
platform-specific mobile application.

3.1 MDA Approach

MDA provides an open, vendor-neutral
approach to the challenges of business
and technology change. MDA separates
business and application logic from
underlying platform technology.
Platform independent models specify
the business functionality and behavior
of an application separate from a

technology specific code that
implements it.

Platform Independent Model: Based on
common software support we specify
various aspects of our application using
a suitable modeling language rather
than programming manually. These
models would later on be translated into
executable code for a specific platform.
This transformation is implemented
using a Model transformation which is
an iterative process.

Platform Specific Model which specifies
how the system is implemented. It
determines how the PIM executes in the
target deployment environment. A PIM
is used as foundation for mapping into
one or more platform specific models.
Such a PSM describes in detail how the
PIM is implemented on a specific
platform, or in a certain technology.
PSMs are also expressed in UML adding
constraints and implementation details.

Platform Model is the final product and
corresponding to code written in a
specific programming language for a
specific application.

3.2 Multi-language, multi-target
compiler

We propose to build a multi-language,
multi-target source to source compiler.
This compiler could take the source
code of one language/platform as input
and generate executable code for other
platforms. This compiler would have a
front end for each target platform. This
front end would perform the syntactic
and semantic analysis and translation to
a lower level representation of the
source code. The output of the front end
would be a parse tree or Abstract Syntax
Tree. The middle-end of this compiler

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

148

would perform code optimization, dead
code elimination, dynamic analysis and
other code fix-ups.

Figure II: Operation of a typical multi-
language, multi-target compiler.

This optimized code will form the input
of the compiler backend. This backend
would be different from the normal
compiler backend in the sense that it
would not generate assembly code but
rather would do code transformation so
as to generate code for different
platforms. The generated code could
then be compiled against the platform
specific compilers to produce the
executable.

3.3 Graphical Modeling Tool

In order to apply and test the design
concepts, a graphical modeling tool
called Mobile Application Modeler
(MobiAppModeler) will be created.
Following are the basic steps that would
be done in order to accomplish this.

1. The MobiAppModeler tool
would be created such that users
could specify the services and
functionality that they want in
their application.

Figure III: Graphical Modelling Tool

2. This tool will have a set of GUI
building blocks such as screens,
buttons, textbox, combobox,
frames, panels etc.

3. Using these GUI elements the
user would be able to build each
of the screen, its contents, set the
properties of GUI elements used,
set events and triggers and set
the transition between different
screens in their application.

4. Internally a state machine will be
built by the tool which will
record all the events and
transitions.

5. Finally, the tool would give the
user option to generate code for
any of the following mobile
platforms: Android, JavaME,
iPhone

6. The generated application source
code will be compiled and
generate an executable that
could be run on the selected
mobile platform.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

149

The code would be generated based on
the state machine developed for the
particular application. Each state in the
state machine would represent a GUI
element and the transition from a given
state to another would be dependent on
some decision. The code to create GUI
elements and handle their events would
be different for each platform.

4.0 TASKS IDENTIFIED

The framework described above has to
be developed in different modules. But
for now, the first and foremost thing is
to identify the functions and device
configurations that are needed to
implement a basic functionality using
different platforms in the mobile phone.

The objective would be to identify the
functions and the device configurations
that are common between the different
platforms. These functions would
contribute to the platform-independent
libraries that the developer would use to
code his application logic and
functionality.

I will start to build the Graphical
Modeler tool incrementally in several
iterations of development.

5.0 CONCLUSION

A viable solution has been identified to
achieve cross-platform portability of
mobile application and Graphical
modeling tool that converts the states to
comprehensive code solves the
portability issue to a larger extent.
However, portability on increasing code
complexity stays open for further
research.

REFERENCES

[1] Holger Schmidt and Franz J. Hauck.
2007. SAMProc: middleware for self-
adaptive mobile processes in
heterogeneous ubiquitous
environments. In Proceedings of the 4th
on Middleware doctoral symposium
(MDS '07). ACM, New York, NY, USA.

[2] Christian P. Kunze, Sonja Zaplata,
and Winfried Lamersdorf. 2006. Mobile
process description and execution. In
Proceedings of the 6th IFIP WG 6.1
international conference on Distributed
Applications and Interoperable Systems
(DAIS'06), Frank Eliassen and Alberto
Montresor (Eds.). Springer-Verlag,
Berlin, Heidelberg, 32-47.

[3]Fuyuki Ishikawa, Nobukazu
Yoshioka, and Shinichi Honiden. 2005.
Mobile agent system for Web service
integration in pervasive network. Syst.
Comput. Japan 36, 11 (October 2005).

[4] Yvan Peter and Herv Guyennet.
2000. Object mobility in large scale
systems. Cluster Computing 3, 2 (April
2000), 75-82.

[5] Beda Christoph Hammerschmidt
and Volker Linnemann. Migratable Web
Services: Increasing Performance and
Privacy in Service Oriented
Architectures. In IADIS Int. J. on Comp.
Science. and Info. Sys., 2006.

[6] Mourad Alia, Frank Eliassen, Svein
Hallsteinsen, and Erlend Stav. 2006.
MADAM: towards a flexible planning-
based middleware. In Proceedings of the
2006 international workshop on Self-
adaptation and self-managing
systems (SEAMS '06). ACM, New York,
NY, USA, 96-96.

