
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

228

Parallel Simulation Based on Multi-core Platform: A Review

Shirish V. Pattalwar
1
, Prof. Dr. Vilas M. Thakare

2
, Manzoor G. Ahmed

3

1
Deptt.Of Electronics and Telecomm.,

Prof. Ram Meghe Institute of Tech. & Research, Badnera-Amravati
shirishpattalwar@rediffmail.com

2
Deptt. Of Computer Science

SGB Amravati University, Amravati
vilthakare@yahoo.co.in

3. Dr.N.P.Hirani Institute of Polytechnic, Pusad

labeeb007@rediffmail.com

ABSTRACT:

Multiple core designs dominating the processor

market, and are hence a major focus in modern

computer architecture research. Thus, for both

product development and research, multiple core

processor simulation environments are necessary,

Parallel simulation is always been a first choice for

speeding up simulations with multi-core computing

platform. In this paper we have presented the

research on parallel simulation based multi-core

architecture. First we present a survey of existing

simulators and simulation methodologies for parallel

simulation based on multi-core and finally we

present some of the challenges and recommendations

to encourage research in designing of parallel

simulator based on multicore platform that could be

run with windows OS directly.

.

Index Terms—Parallel simulation, multicore

platform, PDES simulators, parallel simulation

based on multi-core platform.

I. INTRODUCTION

The motivation for this survey is the proliferation of

multi-core, many-core and multi-core cluster

architectures, which have inspired us to explore

existing simulation methodology and simulator for

parallel simulation based on these platform. Parallel

hardware has been common in, e.g., server

environments for a long time already but more

recently also client platforms (i.e., desktop and

laptop computers) have been adopting multi-core

processors. Furthermore With the naissance of multi-

core processor and its on-going development,

concurrency will be the next major revolution after

the object-oriented revolution in how we write

software [1]. In the field of modeling and simulation,

simulation applications are expected to be executed

very fast. Even if the modeled physical systems are

becoming more and more complicated parallel

simulation is an effective way to speed up the

running of simulation.

In most of the work carried out on parallel

simulation, the target machine and host machine

used were cluster or SMP platform with Linux or

Unix OS. The prices of traditional super computer

and large scale cluster are too high to be afforded,

which limits the extensive popularization of parallel

simulation specially PDES in simulation software

developer community or general research

community. Multi-core platform has the advantages

of high performance-price ratio, small purchasing

risk, easy moving, high memory access speed,

windows OS compatible, easy operation, etc. It will

offer a new physical computing platform to the

parallel simulation. However, writing parallel

simulators can be extremely difficult since traditional

serial and parallel software cannot fully exploit

multi-core's capability and computing power without

parallelizing restructure [2]. Also maintaining

causality i.e. future event should not be executed

before occurrence of past event during parallel

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

229

execution is the central challenge both for the

correctness of the simulation and for achieving good

simulation performance [3].

The Multi-core processor has come into the

market for just about few years, and according to so-

called new Moore’s Law, the number of cores per

chip wills double every 2 years [4, 11]. If this holds

true, multi-core machines will soon evolve to many-

cores, with 10s if not 1000s of cores per chip. The

terms many-core and massively multi-core are

sometimes used to describe multi-core architectures

with an especially high number of cores (tens or

hundreds). Already, there are some special-

purpose(research)multi-core processors that are

available from a number of vendors and some are

under development with 64 cores (Tilera [5]), Intel’s

80-core (Polaris prototype [6]), IBM’s 80 core

(Cyclops-64[7]), Ambric's 336 core (Am2045[8]),

IBM’s four PowerPC 450 cores (BlueGene/P [9])

supercomputer product and even graphics engines

with 960 cores (NVIDIA Tesla S1070 [10]). As a

result, we have entered the era of Multi-core clusters

(MCCs).

Currently research on parallel simulation

based on multi-core, many-cores and Multi-core

clusters platform is in early phase. Specifically

research that will shift the platform of PDES from

traditional supercomputer to multi-core computer has

bright prospect .So there exist great demand &

challenge to write the future desktop simulation

software that will be the parallel simulation based on

multi-core or many-core platform that could run on

Windows OS directly. Remaining of paper is

arranged as section-II: a brief overview existing

simulation methodologies and simulators for parallel

simulation based on multi-core platform and section-

III: challenges and limitations for parallel multi-core

simulator IV: recommendations to encourage

research in designing of parallel simulator based on

multi-core platform.

II. SIMULATING METHODOLOGIES

& SIMULATORS

Parallel simulation is a vast field employing

countless techniques and methodologies based on

various computer architecture platforms. In this

section, we present an overview of the popular

parallel simulation methodologies and corresponding

parallel simulators based on multi-core platform.

A. Multi-threaded methodology

B. Multi-scheduler methodology

C. Slack simulation

D. Two-Phase Trace-driven Simulation

E. Parallel Discrete Event Simulation

A. Multi-threaded Methodology

In this approach POSIX threads (pthreads) are used

where each POSIX thread simulate the activity of an

executing core. J. Donald and M. Martonosi et al

used this methodology [2] to convert existing

uniprocessor simulators into parallelized multiple-

core simulators. Original uniprocessor simulator

effectively clones itself into duplicate cores by

calling pthread_create. Each core then runs its own

simulation in parallel with other cores. This way, the

simulator code retains the same structure as the

original uniprocessor simulator. This work

parallelizes simulators to run on a shared memory

host wherein a core cannot access a shared resource

if any other cores have not yet passed that

timestamp. Thus synchronization is done on a per-

cycle basis, although invoked only when shared

resources are accessed.

Many simulators written in sequential

languages poses characteristic that much of the

simulator state is shared across global variables.

Since many of these variables should instead have

multiple copies to reflect the states of multiple cores,

this poses an initial problem which is being exploited

by a language construct known as thread-local

storage (TLS) [13].Thread-local storage is supported

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

230

on many development platforms such as gcc,

Microsoft Visual C++,Borland C/C++ Builder and

Intel C/C++ compiler [13]. TLS is not, however, a

central tenet of this methodology, but rather a useful

implementation trick specific to multithreading in

languages with global variables such as C and C++.

* Turandot (PTCMP): Turandot (PTCMP) is first

parallel multi-core simulator based on Turandot [17].

PTCMP is derived by converting Turandot trace-

driven uniprcessor simulator by employing

multithreaded simulation methodology. PTCMP

supports simultaneous multithreading, parallel

benchmarks[14], heterogeneous cores, and frequency

scaling all within its parallel framework. PTCMP is

the faster simulator in all cases because of

Turandot’s extensive use of predecoded information

[15] and because the overhead of functional

modeling is avoided in a trace-driven framework.

However, because this simulator is trace-driven it

becomes I/O-bound when simulating a moderately

large number of input programs. Thus, PTCMP able

to achieve at most 1.5X speedup and performance

decreases beyond three nodes because of congestion

in the HyperTransport channels.

B. Multi-Scheduler Methodology

In a multi-scheduler methodology, simulation engine

is implemented as a user-level thread-scheduler. A

scheduler sorts and schedules all modules (jobs).

Each job is regarded as a user-level non-preemptive

thread on scheduler. Multiple schedulers created,

each of which runs/executed on a dedicated host

thread.

* P-Mambo (Parallel Mambo:

A Full System Simulation Environment: Parallel

Mambo is a multi-threaded implementation of

Mambo. Mambo [20] is IBM’s full-system discrete

event-driven simulator which models PowerPC

systems, and provides a complete set of simulation

tools to help IBM and its partners in pre-hardware

development and performance evaluation for future

systems. Mambo’s simulation engine is implemented

as a user-level thread-scheduler. Mambo simulates

target systems on a single host thread or Mambo is

implemented as a sequential simulator because there

is only one scheduler to schedule Mambo’s modules

(jobs). When the number of cores increases in a

target system, Mambo’s simulation performance for

each core goes down. So parallelizing Mambo by

creating multiple scheduler (multi-scheduler

methodology), each of which runs on a dedicated

host thread resulted in parallel multi-core simulator

P-Mambo [18]. The first version of P-Mambo

implemented in functional modes. Some benchmarks

have been tested to evaluate the performance of P-

Mambo. The benchmark set is the OpenMP

implementation of NAS Parallel Benchmark (NPB)

3.2 [19]. The host machine is an IBM Blade Center

LS21, which has two dual-core AMD Opteron 275

processors and 8GB memory. The target machine is

a 4-core PowerPC machine with 6GB memory. The

target OS is linux 2.6.16(ppc64), while the host OS

is linux-2.6.18(x64 64). P-Mambo is a full-system

simulator, the whole simulation time of a benchmark

includes overhead of booting OS. The speedup with

overhead is calculated by the whole simulation time

of a benchmark, while the speedup without overhead

is calculated by the pure workload simulation time of

a benchmark. So P-Mambo achieves the maximum

and average speedups (without overhead) of 1.9 and

1.8 respectively when running on two host threads

and 3.8 and 3.4 respectively when running on four

host threads.

C. Slack Simulation:

In slack simulations, the simulated cores do not

necessarily synchronize after every simulated cycle,

but rather they are granted some slack. Slack is

defined as the cycle count difference between any

two target cores in the simulation. Small slacks such

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

231

as a few cycles greatly reduce the amount of

synchronization among simulation threads and thus

improve the simulation efficiency with no or

negligible simulation errors [16].There exist

numerous slack simulation schemes , four are to

mention here specifically.

i) Cycle-by-cycle ;(zero slack) all threads must

synchronize after every simulated cycle.

ii) Quantum-based; all core threads must

synchronize every three cycles, i.e. 3-cycle

quantum and a 2-cycle slack.

i) Bounded slack; the maximum slack among

threads is bounded (the slack is kept below a

preset number of cycles).

ii) Unbounded slack; the bound on the slack is the

entire simulated time.

Slack simulation offers new trade-offs between

simulation speed and accuracy. Slack simulation

accelerates the parallel simulation of CMPs by

relaxing the tight synchronization enforced between

simulation threads in cycle-by-cycle (cycle accurate)

simulation.

 * SLACKSIM (Slack simulator):

SlackSim is Parallel simulator used to evaluate CMP

(chip multiprocessor)) target by employing slack

simulation schemes.CMP consist of multiple cores

on a die, where each core has a private L1 data/

instruction caches and all cores on a die share a large

L2 cache. The L2 cache is typically organized as a

set of banks with non-uniform access times (NUCA

[23-24]). Banks can be shared or private per core.

In SlackSim, both target and host systems are CMPs

and simulations are parallelized using the POSIX

Threads programming model [21] and simulation

environment is built on top of Linux. The general

framework of SlackSim is made of two types of

Pthreads: several core threads and one simulation

manager thread. A core thread simulates a single

target core of a CMP with its L1 caches. The

simulation manager thread has two functions. Its first

function is to simulate the on-chip lower-level cache

hierarchy including L2 cache banks and their

interconnection to cores. Its second function is to

orchestrate and pace the progress of the entire

simulation. The simulation pace is controlled by two

variables shared by each core thread and the

simulation manager thread: local time and max local

time. A core thread increments its local time after

every simulated clock cycle of its target core. The

max local time of each core is set by the simulation

manager thread in accordance with the slack

simulation scheme. A core thread can advance its

own simulation and local time for as long as its local

time is less than or equal to its max local time. It

suspends itself when the local time reaches the max

local time. The simulation manager thread maintains

the global time, which is equal to the smallest local

time of all core threads. As the global time increases,

the simulation moves forward. The simulation

manager thread synchronizes the progress of the

simulation by setting the max local time of each core

thread. SlackSim takes advantage of efficient data

sharing on CMP platforms.

D. Two-Phase Trace-driven Simulation

(TPTS):

Two-Phase Trace-driven Simulation proposed in [29]

splits detailed timing simulation into a trace

generation phase and a trace simulation phase. Much

of the simulation overhead caused by uninteresting

architectural events is only incurred once during the

cycle-accurate simulation based trace generation

phase and can be omitted in the repeated trace-driven

simulations. The goal of this methodology is to

facilitate fast testing of system design ideas before

undertaking more expensive full-system simulation.

* TSIM: tsim, a prototype multi-core processor

simulator is developed based on the TPTS

framework. It models a tile-based multi-core

processor having a two-level memory hierarchy,

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

232

interleaved memory controllers, a directory-based

coherence protocol, and a 2D-mesh network, tsim is

capable of simulating a multiprogrammed workload

(composed of independent threads) or a shared-

memory multithreaded workload (composed of data-

sharing, synchronized threads) When 16 threads

were modeled, tsim achieved the simulation

throughput of 146.5 MIPS (millions of simulated

instructions per second) on a commodity Linux box.

E. PDES(Parallel Discrete Event Simulation):

Parallel Discrete Event Simulation (PDES) is a

formalism of simulation where simulation time does

not advance from one time step to the next but,

rather, advances from the time-stamp of one event to

the next [26]. Parallel discrete event simulation

distributes simulation entities and events to multiple

processors (or executing cores) so as to speed up the

execution of simulation. PDES can be deemed as

multiple serial simulations and each serial simulation

is called a Logical Process (LP). Multiple serial

simulations run at the same time and communicate

with each other by exchanging time-stamped

messages. In order to parallelize discrete event

simulation on multi-core platform, parallel

programming model and synchronization algorithm

are two of the most important problems to be solved.

By using Parallel programming model simulation is

partitioned into multiple LPs and distributed these

LPs among executing cores on multi-core platforms

for running. Whether shared memory model or

message passing model is adopted, the multiple

processes/threads created are all scheduled by

operating systems. Generally they will be assigned

the same priority. Programmers need not to distribute

them to executing cores manually.

Unfortunately, events can’t be ensured to

access LPs in time-stamp order which leads to

problem called synchronization of PDES. A

synchronization algorithm is needed to ensure that

events are processed in a correct order and the

parallel execution of the simulator yields the same

results as a sequential execution. Synchronization

algorithms can be broadly classified as either

conservative or optimistic. Optimistic algorithms

use a detection and recovery approach. If events are

processed out of timestamp order, a mechanism is

provided to detect and recover from such errors. In

the conservative approach, the simulation of each

message (event) is blocked until it is verified that the

event is safe [3].

* Optimistic PDES simulator: Referring to

open-source PDES simulators such as WARPED 2

[27] Nian-le Su and his team et al [29] developed a

PDES simulator which can run effectively on multi-

core computer with Windows OS. They have

adapted the Message passing model with Optimistic

synchronization approach. Simulation environment is

formulated using C++ language and MPICH [25]

message passing library.

With MPI adopted, interaction among LPs

in PDES is completed entirely through explicit

messages. Several kinds of messages need to be

transferred, such as initialization message, start

message, event message, negative event message,

GVT message, GVT update message, terminate

token. Before these messages are sent, they have to

be transformed into byte stream through

serialization. After received, byte stream has to be

transformed back into different kinds of messages

through deserialization. To analyze both the

overheads of the parallel simulator and the effects of

event granularity, process number, lookahead on the

simulation performance the Phold model [28] is

developed which is a PDES simulator test model

with symmetrical load. Optimistic PDES based on

multi-core platform achieved good speedup for

applications with coarse-grained events. Compared

with time-stepped execution formalism showed in

[12].

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

233

III. CHALENGES AND LIMITATIONS

From our survey, we found the following

limitations and challenges that the multi-core parallel

simulators face.

i) One of the main challenges in simulating

multicore processors is balancing portability of

the simulator with the ease of using and

extending the simulator. This challenge can be

solved by identifying and using a good

programming model for multicore and cluster

simulation hosts. The key idea behind such a

programming model should be exploiting local

multiprocessor as well as cluster computing

power

ii) Next to increasing the level of abstraction,

another key challenge for architectural simulation

in the multicore or manycore era is to parallelize

the simulation infrastructure in order to take

advantage of increasing core counts. One of the

key issues in parallel simulation though is the

balance of accuracy versus speed. Cycle-by-cycle

simulation advances one cycle at a time, and thus

the simulator threads simulating the target threads

need to synchronize every cycle. Whereas this is

a very accurate approach, its performance may be

reduced because it requires barrier

synchronization between all simulation threads at

every simulated cycle. If the number of simulator

instructions per simulated cycle is low, parallel

cycle-by-cycle simulation is not going to yield

substantial simulation speed benefits and

scalability will be poor.

iii) In order to take advantage of multi-core

architectures it is necessary not only to

coordinate multiple threads of execution, but also

to be conscious of memory management issues

such as cache efficiency, garbage collection and

thread safety.

iv) Most of existing parallel simulators run on

clusters with Linux or UNIX. The prices of

traditional super computer and large scale cluster

are too high to be afforded, which limits the

extensive popularization of parallel simulation

specially PDES in simulation software developer

community.

IV. RECOMMENDATION

Based on the aforementioned observations, we make

the following recommendations for fostering

research in the area of Parallel simulators based on

multicore platform.

Recommendation 1: The choice of programming

model:

As identified in the challenges, the choice of

programming model is a key challenge for

developing simulators for multicore simulation hosts.

It is also essential that to ensure scalability of the

simulation host, such programming model should be

seamlessly extensible to a cluster of computers.

Streaming programming models based on well

established process calculi such as Communicating

Sequential Processes may be the solution to this

issue.

Recommendation 2: Use of Parallel Simulation

Techniques for Current Simulation Hosts:

It is essential to note that as multicore machines are

growing more complex, the simulation hosts are also

becoming more powerful. Over the last few years,

even desktop computers with two or more

processors/processor cores have become available to

the general public [30], [31]. Simulator designers

should take note of this, and research simulators

using Parallel Discrete Event Simulation (PDES) that

could be run on desktop with windows OS directly.

REFERENCES

[1] H. Sutter, "The Free Lunch Is Over: A

Fundamental Turn toward Concurrency in

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

234

Software," Dr. Dobb's Journal, vol.30, pp. 16-

22, 2005.

[2] Z. Jia-an, W. Cheng-shan, Wu Ai-guo,” A

study of power system parallel simulation

methods based on multi-core multithreaded

processor platforms” International Conference

on 15-17 April 2011

[3] R M. Fujimoto. Parallel discrete event

simulation. Commun. ACM, 33(10):30–53,

1990.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.

Gebis,P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker,J. Shalf, S. W.

Williams, and K. A. Yelick, “The landscape

of parallel computing research: A view from

berkeley,” electrical Engineering and

Computer Sciences, University of California

at Berkeley, Tech. Rep. UCB/EECS-2006-

183, December 2006.

[5] http://www.tilera.com/pdf/ProductBrief

Tile64 Web v3.pdf.

[6] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H.

Wilson,J. Tschanz, D. Finan, P. Iyer, A.

Singh, T. Jacob, S. Jain, S. Venkataraman, Y.

Hoskote, and N. Borkar. An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm

CMOS. In Proceedingsof ISSCC, 2007.

[7] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and

Guang R. Gao. “Toward a

softwareinfrastructure for the cyclops-64

cellular architecture”. In Proceedings of the

20th In-ternational Symposium on High-

Performance Computing in an Advanced

Collaborative.Environment (HPCS'06),

volume 0, page 9, Los Alamitos, CA, USA,

2006. IEEE Computer Society.

[8] K. Pedretti, S. Kelly, and M. Levenhagen,

"Summary of Multi-Core Hardware and

Programming Model Investigations," Sandia

National Laboratories, Albuquerque, New

Mexico, USA, Technical Report SAND2008-

3205, 2008.

[9] http://www.nvidia.com/object/product tesla

s1070 us.html.

[10] http://www.intel.com/technology/architecture/down

loads/quad-core-06.pdf.

[11] Wikipedia,“Moore'sLaw”,

http://upload.wikimedia.org/wikipedia/commo

ns/0/06/Moore_Law_diagram_(2004).png

[12] J. Donald and M. Martonosi, "An Efficient,

Practical Parallelization Methodology for

Multicore Architecture Simulation," IEEE

Computer Architecture Letters, vol. 5, pp.14-

17, 2006.

[13] “Thread-localStorage,”

http://en.wikipedia.org/wiki/Thread Local

Storage, 2006.

[14] J. Donald and M. Martonosi, “Power

Efficiency for Variation-Tolerant Multicore

Processors,” in Proc. of the Intl. Symp. on Low

Power Electronics and Design, Oct. 2006.

[15] M. Moudgill, J.-D. Wellman, and J. H.

Moreno, “Environment for PowerPC

Microarchitecture Exploration,” IEEE Micro,

vol. 19, no. 3, pp. 15–25, May/June 1999.

[16] J. Chen,Murli A. ,M. Dubois, “Exploiting

Simulation Slack to Improve Parallel

Simulation Speed” Department of Electrical

Engineering - Systems, University of Southern

California.

[17] M. Moudgill, J.-D. Wellman, and J. H.

Moreno, “Environment for PowerPC

Microarchitecture Exploration,” IEEE Micro,

vol. 19, no. 3, pp. 15–25, May/June 1999.

[18] K. Wang, Y. Zhang, and H. Wang,

"Parallelization of IBM Mambo System

Simulator in Functional Modes," ACM

SIGOPS Operating Systems Review, vol. 42,

pp. 71-76, 2008

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

235

[19] http://www.nas.nasa.gov/Resources/Software/

npb.html.

[20] P. Bohrer, M. Elnozahy, A. Gheith, C.

Lefurgy,T. Nakra, J. Peterson, R. Rajamony,

R. Rockhold, H. Shafi, R. Simpson, E.

Speight, K. Sudeep, E. V.Hensbergen, and L.

Zhang. Mambo – A Full System Simulator for

the PowerPC Architecture. ACM

SIGMETRICS Performance Evaluation

Review, 8–12, March 2004.

[21] J. Chen, M. Annavaram, and M. Dubois,

"SlackSim: A Platform for Parallel

Simulations of CMPs on CMPs," Ming Hsieh

Department of Electrical Engineering,

University of Southern California, Los

Angeles, USA, Technical Report 2008

[22] P. Bohrer, M. Elnozahy, A. Gheith, C.

Lefurgy,T. Nakra, J. Peterson, R. Rajamony,

R. Rockhold, H. Shafi, R. Simpson, E.

Speight, K. Sudeep, E. V.Hensbergen, and L.

Zhang. Mambo – A Full System Simulator for

the PowerPC Architecture. ACM

SIGMETRICS Performance Evaluation

Review, 8–12, March 2004.

[23] H. Dybdahl P. Stenstrom,”An Adaptive

Shared/Private NUCA Cache Partioning

Scheme for Chip Multiprocessors, “ in Proc.

of the Int. Symposium on High Performance

Architecture (HPCA 2007

[24] J. Huh et al.,”A NUCA Substrate for flexible

CMP Cache Sharing,” IEEE Transactions on

Parallel and Distributed Systems, Vol.18

No.8, August 2007, pp.1028-1040.

[25] http://www-unix.mcs.anl.gov/mpi/mpich1/.

[26] Nianle Su, Hongtao Hou, Feng Yang, Qun Li,

and Weiping Wang, “Optimistic Parallel

Discrete Event Simulation Based on Multi-

core Platform and its Performance Analysis”

[27] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, R.

J. Hoekstra, et al., "Redesigning the

WARPED Simulation Kernel for Analysis and

Application Development," in Proceedings of

the 36th Annual Simulation Symposium,

Orlando, Florida, USA, 2003, pp. 216-223.

[28] Fujimoto, "Performance of Time Warp under

Synthetic Workloads," Proceedings of the

SCS Multiconference on Distributed

Simulation, vol. 22, pp. 23-28, Jan. 1990.

[29] Hyunjin Lee, Lei Jin, Kiyeon Lee, S.

Demetriades, M. Moeng,” Two-phase trace-

driven simulation (TPTS): a fast multicore

processor architecture simulation approach”.

Exper. 2010; Published online 21 January

2010 in Wiley Inter Science

[30] Intel Multi-core Website,

http://www.intel.com/multi-core/

[31] J. Eker et al., “Taming heterogeneity–the

Ptolemy approach” In Proceedings of the

IEEE Special Issue on Modeling and Design

of Embedded Software, vol. 91, pp. 127-144,

Jan 2003.

