
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

274

An overview of XML Parsing using
Prefetching algorithm

Ms.Y.S.Alone,Ms.V.M.Deshmukh
 Department of Computer Science and Engineering, Sant Gadage Baba Amravati University, India

Email:msvmdeshmukh@rediffmail.com,ysalone29@rediffmail.com

Abstract: An XML parser is the component that deciphers the XML code .Extensible Markup Language (XML) has become a
widely adopted standard for data representation and exchange.However; its features also introduce significant overhead

threatening the performance of modern applications. XML parsing is the process of reading an XML document and providing an

interface to the user application for accessing the document In this paper we present a study on XML parsing through different

classic prefetching algorithms. Without a parser, your code cannot be understood. Computers require instruction. An XML

parser provides vital information to the program on how to read the file. Parsers come in multiple formats and styles This paper

is an overview of the various issue involved in XML parsing through different prefetching algorithms.

Keywords: XML Parsing,SAX,DOM, Prefetching,

1 INTRODUCTION
XML has become much more than just a data format
for information exchange[3]. Enterprises are keeping
large amounts of business critical data permanently in
XML format. Data centric as well as document and
content centric businesses in virtually every industry
are embracing XML for their data management and
B2B needs[5].Although XML is prevalent with many
benefits, due to its verbosity and descriptive nature,
XML parsing has introduced heavy performance
overhead [1,2]. Generally,XML parsing is both
memory and computation intensive.It consumes
about 30% of processing time in web service
applications [4], and has become a major
performance bottleneck in database servers [5].
Extensible Markup Language (XML) is emphasized
for its language neutrality, application independency
and flexibility, and thus has been adopted as the
standard in data exchange and representation.. This is
only going to get even worse as XML dataset get
larger and more complicated.To improve the
performance of XML processing, most existing
proposals are dedicated to make acceleration from
computation side. However, in this paper, we
demonstrate that memory access acceleration is
equally (if not more) important compared to
computation acceleration. Therefore, different from
previous computation acceleration studies, we
propose to accelerate XML parsing from the
memory-side with the incorporation of data
prefetching techniques[15]. memory-side
acceleration is generic and can be applied irrelevant
of the parsing model underneath. In addition, its
combination with computation-side acceleration will

largely relieve the performance pressure incurred by
XML parsing.
 XML parsing is the process of reading an XML
document and providing an interface to the user
application for accessing the document. An XML
parser is a software apparatus that accomplishes such
tasks. In addition, most XML parsers check the well-
formedness of the XML document and many can also
validate the document with respect to a DTD
(Document Type Definition) or XML schema[20].
This core should eventually be one of multiple
specialized cores in a heterogeneous many-core chip,
and acts as the Data Exchange Frontend(DEF),
efficiently[11] (in terms of power and performance)
parsing the incoming XML data, and then passing the
output to other cores for further processing[16].

2. THE XML PARSING PROCESS
XML parsing is a process that scans through the input
XML documents, breaks them into small elements,
and builds corresponding inner data representation.
It is a pre-requisite for any processing of an XML
document because an XML document has to be
parsed before any other operations can be performed.
However, XML parsing is also very expensive due to
the high overhead incurred by both computation and
memory access.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

275

Figure1: XML Parsing Process

Usually, XML data parsing consists of three steps:
character conversion, lexical analysis and syntactic
analysis, as shown in Figure 1[1].The first parsing
step, character conversion:The first parsing step
involves converting a bit sequence from an XML
document to the character sets the host programming
language understands. For example, documents
written in Western, Latin-style alphabets are usually
created in UTF-8, while Java usually reads characters
in UTF-16. In most cases, a UTF-8 character can be
converted to UTF-16 by simply padding 8-bit leading
zeros. For example, the parser converts “<” “a” “>”
from “3C 61 3E” to “003C 0061 003E” in
hexadecimal representation. lexical analysis:
The second parsing step involves partitioning the
character stream into subsequences called tokens.
Major tokens include a start element, text, and an end
element, A token can itself consist of multiple
tokens. Each token is defined by a regular expression
in the World Wide Web Consortium (W3C) XML
specifications.For example, a start element consists
of a “<”, followed by an element name, zero or more
attributes preceded by a space-like character, and a
“>”.partitions the character sets into subsequences
called tokens, like start element, text, and end
element. Each token is defined by a regular
expression in the World Wide Web Consortium
(W3C) XML specifications [8]. The third parsing
step, syntactic analysis, verifies the structure of
tokens by checking that they have been properly
nested. It is usually implemented by pushdown
automaton (PDA)[14]. After syntactic analysis, the
PDA organizes tokens into different data
representations available for subsequent accesses or
modifications via various application programming
interfaces (APIs) provided by different parsing
models. The first two steps stay the same among
different parsing models. However, the third step,
syntactic analysis: exhibit variable behaviors when
different parsing model is applied [6]. The third
parsing step involves verifying the tokens’ well-
formedness, mainly by ensuring that they have
properly nested tags. The pushdown automaton
(PDA) the following transition rules:

1. The PDA initially pushes a “$” symbol to
the stack.

2. If it finds a start element, the PDA pushes it
to the stack.

3. If it finds an end element, the PDA checks
whether it is equal to the top of the stack.

• If yes, the PDA pops the element
from the stack. If the top element is
“$”, then the document is “well-
formed.” Done! Otherwise, the
PDA continues to read the next
element.

• If no, the document is not “well-
formed.” Done!

3. XML PARSING MODELING
Most XML parsers can be classified into two broad
categories, based on the types of API that they
provide to the user applications for processing XML
documents: event-driven parser and tree-based
parser[1]. On one hand, event-driven parser simply
parses the document and associates any tag it finds
along the way with corresponding event, including
the start and end of the document, finding a text
node, finding child elements, and hitting a malformed
element. It transmits and parses XML info sets
sequentially at runtime[12]. The parser itself does not
store any information of the XML document, so that
the application can just access partial data before
parsing is completed. As a result, event-driven parser
has an enviably small memory footprint and low
latency, making it suitable for streaming or forward-
only applications. Event-driven model can be further
divided into two classes: pull parser and push parser,
according to the parser- application interaction.
Simple API for XML (SAX) [7,1] adopts the push
model, which uses callback functions to report all the
events from the parser to the application. In contrast,
Sax [18] adopts the pull model, in which clients pull
XML data when it is needed so that it can skip
uninterested events. As shown in upper part of Figure
2, SAX parses the XML document and then pushes
the XML information into application in terms of
SAX events. On the other hand, tree-based parser
reads the entire content of an XML document into
memory and creates an in-memory tree structure to
represents parent-childsibling information. Only after
parsing is complete, constructed trees can be
navigated freely and parsed arbitrarily for the
duration of the document processing, which makes
this parser suitable for massive and frequent updates.
This flexibility, however, comes at a great cost of
potentially large memory requirement and significant
access delay, especially when large document is
processed. Document Object Model (DOM) [8] is the

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

276

official W3C standard for tree-based parser. As
shown in bottom part of Figure 2, DOM parser
processes XML data, creates an
object-oriented hierarchical representation of the
document and offers the full access to the
XML data. In this study, we focus on the two most
popular parsing models, namely, SAX and DOM[19].

Figure 2: SAX and DOM Parsing Flow

4.PREFETCHING TECHNIQUES
Data prefetching has been proposed as a speculative
technique to bridge the speed gap between CPU and
memory subsystem[18,1].It alleviates the
performance degradation from the long-latency
memory accesses by predicting the memory access
pattern of the application and speculatively
prefetching data that would be used in future
computation. Considering that the CPU memory
performance gap is on the order of hundreds of
processor clock cycles, prefetching is an attractive
way to remove the affect of long latency memory
accesses.

5.CLASSIC PREFETCHING

ALGORITHM
Prefetching techniques has been well studied and lots
of algorithms have been proposed. We list some
classic prefetching algorithms below.
Sequential prefetching prefetchs the block or blocks
that follow the current demanded block, and is fit for
the programs with the consecutive memory access
pattern [1]. As an improvement, Sequential tagged
prefetching [1] issues a prefetch upon a cache miss as
well as when a prefetched block is referenced for the
first time, thus it requires an extra bit per block to
mark the prefetch state. The Sequential prefetching
family increases the performance on a broad range of
applications at a low cost, however, at the expense of
many useless prefetches.

Stride prefetching makes prefetch requestes
according to the observed strides that separate
memory addresses flow. Conventional stride

prefetching uses a record table indexed by the
program counter (PC) that associates strides to the
loads following this kind of memory access
pattern[21]. If address a is referenced by a load that
hits in the table, the matching entry indicates that the
load is following
a stride pattern, then prefetcher issues there quest
for addresses a+s, where s is the associated stride.
Strem Prefetching traces a sequence of nearby misses
when their addresses follow the same positive or
negative direction in a small memory region . In
some design,there always exsites a streaming buffer
to store the fetched data. Correlating prefetching
predicts future addresses from tables that record the
past memory program behavior .Usually, it
generalizes the stride table by registering the stream
of addresses associated either to the load PC or to an
address that misses in the corresponding cache level.

6.SOFTWARE PREFETCHING Vs.

HARDWARE PREFETCHING
According to how prefetching is implemented, it can
be classified into two classes: software prefetching
and hardware prefetching.

• Software Prefetching
Software prefetching]need to introduce new
prefetching instructions into the instruction set
architecture (ISA), which could bring data at
specified memory addresses into cache. It is assisted
by compiler algorithms to insert software prefetching
instructions into proper places of the source code. In
the preprocessing stage, compiler gets the global
information about memory data
access pattern, locates those data-sets that are lean
towards cache misses and calculates the positions to
insert the prefetching instruction. In Intel® Pentium®
4 processor, it enables using the four prefetch
instructions introduced
with Streaming SIMD Extensions (SSE). These
instructions are hints to bring a cache line of data in
to various cache levels. Since software prefetching
gets the assistance from compiler or programmer, it
can acquire a globule map of data accesses, handle
irregular access patterns and make more precise
prefetchings. However, the insertion of the
prefetching instruction is statically determined so
software prefetching can not adapt to the phase
change of the application. Since new instructions
need to be added, recompilation is required, so these
do not benefit the scenarios where recompilation is

inconvenient.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

277

• Hardware Prefetching
Different from software prefetching that statically
inserts prefetching instructions by compiler,
hardware prefetching frees the need to expand
instruction set architecture and frees the compiler
from revising the source code of applications. It
automatically determines the data
accesses that might cause cache misses and then
make prefetching requests. Its decision is based on
the recorded
history information so that it can adapt to the phase
change of application. However, it must consume
extra
hardware resource and is unable to gain a complete
picture of the whole memory pattern. Therefore, it
does not suit for the case of irregular data access and
short arrays for the penalty of history start-up. In our
study, we focus on hardware prefetching for its
advantage of no revise of the source code

7.CONCLUSIONS

Different from previous research work which focused
on computation acceleration of XML parsing, we
first study process of XML parsing, classic
prefetching algorithms. We then proposed to make
acceleration for XML parsing.

8. FUTURE WORK

The next step of this research project is to integrate
memory-side and computations-side accelerators of
XML
parsing into a single core, and optimize its
performance and power consumption. Then,
ultimately, we are going to integrate this core onto
many-core architectures to act as a Data Exchange
Frontend (DEF).

 REFERENCES

[1] Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, Jean-Luc

Gaudiot, "Acceleration of XML Parsing Through
Prefetching," IEEE Transactions on Computers, 19 April
2012. IEEE computer Society Digital Library. IEEE
Computer Society,
http://doi.ieeecomputersociety.org/10.1109/TC.2012.88

[2] Web Caching and XML Prefetching for Accessing Social
Sites from Mobile Environment Renuka Suryawanshi1 ,Prof.
Amit Savyanavar2 Pune University, Computer
Department,Pune, Maharashtra 411038, India2 Pune
University, Computer Department Pune, Maharashtra
411038, India International Journal of P2P Network Trends
and Technology- Volume2Issue1-2012
http://www.internationaljournalssrg.org

[3] K.Chiu,M.Govindaraju, and R. Bramley. Investigating the
limits of soap performance for scientific computing. In

Proceedings of the 11 th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 20002

[4] M. R. Head, M. Govindaraju, R. van Engelen, andW.
Zhang.Grid scheduling and protocols
benchmarking xml processors for applications in grid web
services. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 121,New York, NY,
USA, 2006. ACM Press.

[5] P. Apparao, R. Iyer, R. Morin, and et al., “Architectural
characterization of an XML-centric commercial server
workload,” in 33rd International Conference on Parallel
Processing, 2004 P.Apparao and M. Bhat. A detailed look at
the characteristicsof xml parsing. In BEACON ’04: 1st
Workshop on Buildin

[6] M. Nicola and J. John, “XML parsing: A threat to
databaseperformance,” in Proceeding of the 12th
International Conference on Information and
Knowledge Management, 2003

[7] International HapMapb
Project:http://hapmap.ncbi.nlm.nih.gov/

[8] SAX Parsing Model: http://sax.sourceforge.net
[9] International HapMap Project:

http://hapmap.ncbi.nlm.nih.gov/
SAX Parsing Model: http://sax.sourceforge.net

[10] Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and Jean-Luc
Gaudiot:”Acceleration of XML Parsing Through
Prefetching” Fellow, IEEE2012

[11] Dr. Andrew Blyth, Dr. Daniel Cunliffe, Dr. Iain Sutherland,
“Security analysis of XML usage and XML parsing” in
Journal of Computers & Security, Volume 22, Issue 6,
September 2003, Pages 494-505.

[12] B. Naga malleshwar Rao, N. Samba Siva Rao, V. Khanaa, “
Exploiting XML Dom for Restricted Access of Information”
in International Journal of Recent Trends in Engineering,

Vol. 2, No. 4, November 2009.

[13] Chen Rongxin, Weibin Chen, “A Parallel Solution to
XML Query Application“ in the Proceedings of the
International Conference on Computer Science and

Information Technology IICCSIT), Vol. 6, pages 542-
546,IEEE, 2010

[14] Kai Ning, Luoming Meng,” Design and Implementation of
the DTD-based XML Parser”, in Proceedings of ICCT 2003.

[15] Kotsakis Evangelos, Klemens Böhm, ”XML Schema
Directory: A Data Structure for XML Data Processing”, in
First International Conference on Web Information Systems

Engineering (WISE’00),Proceedings, pp 62-69, June 19-21,

2000, Hong Kong, China, IEEE CS Press
[16] Pan Y., W. Lu, Y. Zhang, and K. Chiu“ A Static Load-

Balancing Scheme for Parallel XML Parsing on Multi-core
CPUs”, in 7th International Symposium on Cluster
Computing and the Grid, IEEE Brazil, May 2007.

[17] Mark E. Williams, Gary R. Consolazio, Marc I. Hoit,” Data
storage and Extraction in Engineering software using XML”,
in Journal of Advances in Engineering Software, Volume 36,

Issues 11-12, November-December 2005, Pages 709-719.

[18] Zacharia Fadika 1, Michael R. Head 2, Madhusudhan
Govindaraju ,”Parallel and Distributed Approach for
Processing Large-Scale XML Datasets”, 10th International
Conference on Grid Computing, IEEE/ACM 2009.

[19] Zhang W. and R. van Engelen “ A Table-Driven Streaming
XML Parsing Methodology for High-Performance Web
Services”, in IEEE International Conference on Web
Services (ICWS’06), pages 197–204, 2006.

[20] Zhang W. and R. van Engelen,” High-Performance XML
Parsing and Validation with Permutation Phrase Grammer
Parsers”,in International Conference on Web Services
(ICWS’08) IEEE,2008

[21] Zhang Xiucheng, PAN Zhongshi, XIANG Lei,” DOM-Based
Research for FOM Parser” in World Congress on Software
Engineering,” IEEE, 2009.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

278

[22] Zhang Ying, Yinfei Pan, Kenneth Chiu, “Speculative p-
DFAs for Parallel XML Parsing”. In the Proceedings of
International Conference on High Performance Computing
(HiPC), pages 388-397, IEEE, 2009.

[23] Zhou Dong, ” Exploiting Structure Recurrence in XML
Processing”, in Eighth International Conference on We
Web Engineering, IEEE, 2008

