
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

313

Different types of Data Privacy Preserving

Repository and Schemes

Mrs.V. M. Deshmukh Miss. A. P. Ghatol Assistant

Professor, CSE M.E (1
st
year, CSE)

msvmdeshmukh@rediffmail.com ashwinipghatol@gmail.com

Prof.Ram Meghe Institute of Technology

and Research,Badnera.

Abstract—Current data sharing and integration among various

organizations requires a central and trusted authority to collect

data from all data sources and then integrate the collected data.

This process tends to complicate the update of data and to

compromise data sources privacy and security. In this paper, we

are going to discuss about different types data privacy preserving

repository and schemes. With the repository, data

sharing services can update and control the access and limit the

usage of their shared data, instead of submitting or sharing

the whole data to authorities may in an organization or

over cloud computing. There are major differences between

the proposed repository and the existing one such as not the

whole data will be share, user will not be able to get

information to use for other purpose. The repository will

promote data sharing and integration. We also highlight a

scheme called Security Policy Integration and Conflict

Reconciliation (SPICR) layer which will also maintain the

security and integrity of the data in an unambiguous

environment. With this proposed layer, data sharing

services can control the access, limit the usage of their shared

data, and improves data sharing and efficiency of the data-

centralized repository making the system scalable with little

human intervention.

Keywords— Privacy concerns of service-oriented solutions,

privacy management, services composition, cloud; Security

policy integration, Conflict reconciliation; Access control policy.

I. INTRODUCTION

Much effort has been devoted to facilitating data sharing and

integration among various organizations. Existing data sharing

and integration systems are usually implemented as

centralized data warehouses collecting and storing data from

various data sources where the data sources and data

warehouses expect to sign business agreements in which the

scope of the shared data and corresponding privacy policies

are specified. This will specify that all shared data will be

kept confidential and will not be disclosed to other unrelated

third parties or be used for other purposes. While this solution

works well for a single organization or a federation of

organizations, where trust relations have been well established,

serious problems will arise when some data warehouses

cannot be trusted by data sources. In such cases, data sources

will refuse to share their data because they have no control of

its usages and disclosures once the data is shared. In fact, data

warehouses indeed can reveal or abuse the shared data.

Furthermore, even if data warehouses adhere to the agreement,

there is no guarantee that they have sufficient capability to

protect the data. This technique is in work when the

environment of computing is homogenous. But during the

ubiquitous computing environments, they pose there certain

unique challenges for generating an integrated congruous

security policy set. In this paper we will present a privacy

preserving repository to accept integration requirements from

users, help data sharing services share data and safeguard their

privacy, collect and integrate the required data from data

sharing services, and return the integration results to users.

Our repository will focus on the matching operations and has

the following major benefits:

1. The data sharing services can update and control the access

and usages of their shared data. That is, data-sharing services

can update their data whenever necessary and determine who

and how their shared data can be used.

2. The data is shared based on the need-to-share principle,

which means that the released information of the data is

sufficient to support users’ integration requirements, but

contains no more information of the data.

3. The repository’s capability is limited to collecting data from

data sharing services and integrating the data to satisfy users’

integration requirements. Except the information needed to be

revealed for data integration, the repository will not have extra

information about the data and cannot use it for other purposes.

The privacy preserving repository which is presented has the

same work over the cloud.

We will also define a SPICR layer to accept integration

requirements from multiple set users belonging to different

organizations and help the repository and data sharing services

share data and safeguard their privacy. The centralized

repository collects and integrates required data from data

sharing services, and returns the integration results to users.

Our layer will focus on the following major benefits such as:

1) The SPICR resolves conflicts among dynamic set of users

and generates non-ambiguous and congruence set of security

policies and allow the repository to share data on a need-to-

share principle.

2) The SPICR allows negotiation among conflicting policies.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

314

We show how efficiently the SPICR facilitate user

collaborations among participating to access and use the

appropriate resources through direct interaction with the

resource owners.

II SYSTEM ARCHITECTURE AND ASSUMPTIONS

A) PRIVACY PRESERVING REPOSITORY:

In existing data integration systems, it is assumed that there is

a central and trusted authority collecting all data from data

sharing services and computing integration results for users

based on the collected data. In our system, as shown in Fig. 1,

the repository collects only the required data for user’s

integration requests from the data warehouses or clients. Fig.

1.a shows privacy preserving repository for data integration

across data sharing services and fig. 1.b shows privacy

preserving repository for securing data across cloud. It is

assumed that the repository will correctly construct the query

plans for users’ integration requirements, decompose query

plans, discover and fetch data from distributed data sharing

services, integrate all data together, and, finally, return the

final results to users. Furthermore, it is also assumed that the

repository is granted the access to the shared data by all data

sharing services, and all shared data is well protected. Because

the data sharing services use the context-aware date sharing

algorithm, the repository cannot learn extra information from

the inferential relations of the information it obtains during the

integration process. The repository consists of two

components: the query plan wrapper and the query plan

executor. The query plan wrapper is responsible for analysing

integration requirements and constructing query plans for the

query plan executor. Since the wrapper development and

optimization have been extensively studied we assume that

the query plan wrapper can select data sharing services and

construct a query plan graph from users’ integration

requirements. Based on this assumption, it will focus on how

to decompose the query plan graph into a set of small sub

graphs for each data sharing service to guide data sharing

services to prepare shared data.The query plan executor is

responsible for executing query plans to fetch data from data

sharing services and producing the final results..

Fig. 1.a) Privacy preserving repository for data integration across data sharing

services.

Fig. 1.b) Privacy preserving repository for securing data across cloud

B) SPICR LAYER:

Our SPICR layer supports the repository to collect only the

required data for user’s integration requests. We assume that

our SPICR layer will correctly evaluate the users’ request to

generate integration requirements and pass it to the repository

to construct the query plans for users’ integration

requirements, decompose query plans, discover and fetch data

from distributed data sharing services, integrate all data

together, and, finally, return the final results to users. Fig. 2

shows the SPICR layer.

Fig.2 the SPICR Layer

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

315

An easy way to comply with the conference paper

formatting requirements is to use this document as a template

and simply type your text into it.

II. Overview of Approaches

A. Privacy Preserving Repository

The goal is to develop a repository to facilitate the data

integration across data sharing services. In this section, we

will present the process of the data integration via our privacy

preserving repository REP. Before going in to the process we

have to know what the query plan and the privacy preserving

repository means. They are defined as follows.

Definition 1 (Query Plan): A query plan P is a partially

ordered set of queries {p1; p2; ------; pmg} with two

properties:

1) Each pi can be evaluated only after all of its precedent

queries have been evaluated.

2) Each pi can use the data directly from data sharing

services or its precedent queries’ outputs as inputs.

The final result of P is the outputs of pi with no successive
queries, and all other queries outputs are intermediate results
[6]

.

The above definition indicates that a query plan P has a

much richer structure than a single query or a set of

independent queries. First, there is a partial order relation

among queries in P. Second, only the outputs of queries in P

without successive queries constitute the final result and all

other intermediate results should be protected.

Definition 2 (Privacy Preserving Repository): For a query

plan P = {p1; p2; ------; pmg} and a repository REP,REP is a

privacy preserving repository for data integration if REP

executes P in a privacy preserving manner then:

1) REP only has P’s final result encrypted with user’s

public key and has no information on P’s intermediate

results;

2) and REP cannot use the data shared for P to evaluate

any other queries [7].

The process of the data integration via our privacy preserving

repository REP can be summarized as follows:

Step 1: The user sends his/her public key pk and the

requirements about data integration to our repository REP.

Step 2: The query plan wrapper of REP analyses the user’s

integration requirements and converts them to a query plan

graph G, and then decomposes G to a set of sub graphs

{G1;G2; _ _ _;Gmg }using the Decompose Algorithm and

sends the sub graphs to the query plan executor. Every sub

graph Gi represents the context of one data sharing service for

conducting context-aware data sharing.

Step 3: For every Gi, the query plan executor looks for the

corresponding data sharing service Si and sends Gi to Si,

which prepares the data using the Context-Aware Data

Sharing Algorithm and returns all randomized data to the

query plan executor.

Step 4: The query plan executor executes the Integrate

Algorithm on all returned data to execute the G and outputs

the results FinalRes of user’s request, which is encrypted with

the user’s public key pk.

Step 5: REP sends FinalRes to the user who then decrypts it

with his/her secret key sk [10].

B. SPICR Layer:

Our approach consists of nine major steps.

Step1: The user provides his /her public key and the

integration requirements of data. Apply homomorphic

encryption algorithm for all values of selected attribute.

Step2: The Security Policy vocabulary generator checks the

policy specifications for the requested user. The generator

resolves ambiguity among the security policies using

approach.

Step3: The Security policy Adapter adapts the existing

security policies for the extended user set. It decides whether to

grant the user to access the data or deny the user.

Step4: The Dynamic Security policy Integrator integrates

security policies to generate a new set of security policies that

is not present in either of collaborating organization.

Step5: The Negotiation-based conflict Reconciler resolves the

conflict between the security policies and makes a

compromise by selecting the weakest security policy in the

policy hierarchy.

Step6: Once the user is granted access to the data , the query

plan wrapper of repository REP generates a query plan graph

G, and then decomposes G to a set of sub graphs

{G1,G2,…,Gm}using the Query Decomposition Algorithm

and sends the sub-graphs to query plan executor. Every sub-

graph Gi represents the context of one data sharing service for

conducting context-aware data sharing.

Step7: For every Gi, the query plan executor looks for the

corresponding data sharing service Si and sends Gi to Si

Step8: The query plan executor executes the Integrate

Algorithm on all returned data to execute the G and outputs

the results final result of user’s request, which is encrypted

with the user’s public key.

Step9: REP sends final result to the REP who then decrypts it

with his/her secret key
[10]
.

IV EXPLANATION OF THE PROPOSED MODELS

A) Privacy Preserving Repository:

Query Plan Decomposition:
The query plan graph G contains the information about all the

data sharing services but each data sharing services only needs

to know its related data hence the query plan wrapper will

decompose G and send only the query plan sub-graphs to their

corresponding data sharing services. For the given query plan

graph G=(V, E, C) with m nodes, the decomposition

algorithm which will construct a sub-graph Gi for each node vi

by extracting vi’s adjacent nodes and corresponding edges

and the labels attached to edges . The sub graph Gi of vi as

(Vi; Ei; Ci; ri), where Vi consists of all vi’s adjacent nodes, Ei

all the adjacent edges, Ci all the labels attached with Ei, and ri

contains all random numbers assigned to Ei are denoted. Gi

represents all data integration operations of the data sharing

service represented by vi [1].

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

316

Context-Aware Data Sharing:

In Decomposition algorithm, the query plan graph G is

decomposed to a set of sub graphs. For each data sharing

service, its sub graph Gi consists of the information about

other data sharing services whose data will be integrated with

its own data and how the data will be integrated together.

Hence, we call the sub graph of vi the context of the data

sharing service of vi in current G. Because data sharing

services are aware of its context in the whole data integration

process, they can determine which information should be

shared and how to limit the usage of the shared data. The

Context-Aware Data Sharing Algorithm help data sharing

services share information with the repository. It focus on the

matching operations to determine whether two records are

matched according to the equality test between their attribute

values. The matching between two data records is replaced by

the matching between their hash values. Hash functions low

conflict probability ensures the correctness of the hash-based

matching and hash functions one-way property enables a third

party to match two data records without revealing their values.

Thus, the hash function is a simple solution for privacy

preserving data matching [1].

Data Integration:

When the repository receives the shared information from all

data sharing services, the repository follow the query plan

graph G and integrate the received information together to

compute the integration results for the user this is done with

the help of the Integration Algorithm.

The integration algorithm work as follows:

Initialize: Before the repository REP evaluates an edge, it first

retrieves the edge’s label information from G to find out

which attributes are to be matched. Meanwhile, REP collects

all attributes shared by the edge tail node for its own out-

edges as AttrOut.

Match: In this step, REP scans and matches tail nodes’ records

with the records from head nodes.

Remove random factors: Assume that the edge’s tail node’s

record rec passes the evaluation of the edge. To use rec to

evaluate the tail node’s out-edges, REP first needs to remove

random factors from the shared information about rec for all

attr belongs to AttrOut

Collect outputs: If the edge’s tail node is the sink node t, REP

collects the outputs of the whole query plan in this step [2].

B) SPICR Layer:

The working of the SPICR layer is explained below:

Step 1: Providing key and encryption algorithm: In the first

step the user provides his /her public key and the integration

requirements of data to SPICR layer. Then we apply

encryption algorithm i.e. homographic encryption algorithm

for all values of selected attribute. As the algorithm it deals

with dynamic environment having secure multi-party

computation.

Step 2: Checking User Integration Requirements Vocabulary:

Then the Security Policy vocabulary generator checks the

policy specifications for the requested user. The generator

resolves ambiguity among the security policies. Information

access may require restrictions based on the content and

context related to the access requests. It uses a specification

language to generate security policy specifications for each

collaborating organization, where a security policy can be

specified as a quadruple with the components derived from

the ontology containing the key concepts needed for

specifying security policies.

Step 3: Security Policy Adaptation: The Security policy

Adapter module adapts the existing security policies for the

extended user set. It decides whether to grant the user to

access the data or deny the user. When an access to a resource

is requested by a user from other participating organizations,

the resource owner should make the decision on whether to

grant the request to the resource. However, since the requester

is from another organization, the resource owner may not have

much knowledge about this requester. So it evaluates a

stranger’s trustworthiness based on where he comes from and

how he is trusted in the organizations he belonged before.

Thus, it will use a similarity-base security policy

adaptation algorithm to help the resource owner make a

decision based on evaluating whether the participating

organizations that the user comes from have similar security

policies, and whether the user request will be granted under

those security policies. However, for dynamic collaborations

in ubiquitous computing environments, we present an

alternative approach based on policy adaptation and

negotiation to achieve dynamic security policy integration

with minimum human intervention.

Step4: Generating composite Set of security Policies: The

Dynamic Security policy Integrator module integrates security

policies to generate a new set of security policies that is not

present in either of collaborating organization. It uses a

negotiation-based approach to generating a congruous set of

security policies which can be accepted by all participating

organizations. Participating organizations will first provide

their inputs towards the generation of the policies, and then

make compromise in order to resolve possible conflicts and

reach an agreement. This is used to address possible conflicts

which arise from the integration, and to specify new security

policies for the resources generated by the collaboration. In

both cases, no single organization can claim the sole

ownership of the generated resources, and thus no security

policies of any participating organization should take priority

over those of other organizations.

Step 5: Resolving Conflict among Security Policies based on

Negotiation: The Negotiation-based conflict Reconciler

resolves the conflict between the security policies using

Negotiation-based Policy Algorithm for conflict reconciliation

and makes a compromise by selecting the weakest security

policy in the policy hierarchy. Thus, instead of rejecting a

possible collaborator because of some conflicting security

policies, collaborating organizations often prefer to take

certain risk and move forward with the collaboration by

relaxing their security policies and adopting some weaker

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

317

security policies to resolve the conflicts. For a specific

resource, each organization specifies a chain of security

requirements instead of just one security requirement. The

head of the chain is the most desirable security policy

travelling through the chain from the head, the security

requirements become weaker and weaker. The SPICR layer

interacts with the Security Policy Database that maintains the

policies along with user credentials, roles and their

permissions in the form of XML schemas. Once the credential

is evaluated, the role is mapped and the context is extracted,

the user is granted access to the data. The SPICR generates

information for data integration process. This information will

help the repository figure out what data should be retrieved

from data sharing services and how to integrate the data

together, and will help data sharing services share their data

without revealing more information than the evaluation of G

needs.

Step6: Query Decomposition: The query plan wrapper of

repository “REP” generates a query plan graph G based on

XML specification i.e. QPSL (Query plan specification

language), and then decomposes G to a set of sub-graphs

{G1,G2,…,Gm}using the Query Decomposition Algorithm

and sends the sub-trees to query plan executor. Every sub-

graph Gi (operator,attribute1, attribute2) of one data sharing

service for conducting context-aware data sharing.

Step7: Context-aware Data sharing: To further protect the

privacy of such information; we use a Context-Aware Data

Sharing algorithm to randomize the result. We focus on the

matching operations to determine whether two records are

matched according to the equality test between their attribute

values. Basically, the matching between two data records can

always be replaced by the matching between their hash values.

The process uses context-aware data sharing algorithm.

Step8: Data Integration: When the repository receives the

shared information from all data sharing services, the

repository should follow the query plan graph G and integrate

the received information together to compute the integration

results for the user. The integration process uses the

Integration.

Step9.Decryption: REP sends final result to the REP who then

decrypts it with his/her secret key
[3] [4]

.

V. CONCLUSION:

In this paper, the presented privacy preserving repository to

integrate data from various data sharing services and an

approach to security policy integration and conflict

reconciliation for collaborating organizations in ubiquitous

computing environments. The repository only collects the

minimum amount of information from data sharing services or

from the client across the cloud which is based on user’s

integration requests, and data sharing services can restrict our

repository to use their shared information only for user’s

integration requests, but not other purposes. For the SPICR

layer, a resource owner can adapt its existing security policies

to cover the new users from collaborating organizations using

the similarity indices as a selection criterion and make a

decision based on their inputs. Collaborating organizations

with conflicting security policies can try to resolve the

conflicts by gradually making security compromise and

relaxing their security policies until the conflict reconciliation

process reaches certain compromise threshold associated with

that particular collaboration. Thus, allow the user to integrate

data with the help of repository without any conflicts.

VI FUTURE WORK:

Future research along this topic includes how to extend the

expressiveness of our specification language, enable our

repository to support more types of data integration operations,

and improve of our repository’s performance for much larger

scale of data size. A possible approach for performance

improvement is to enable the precomputation of data, which

allows the data sharing services to obtain some preliminary

information about their data for accelerating data sharing. In

future we will be coming up with a secure development

scheme of the hash function and its implementation in public

key cryptography for maintaining the privacy of data in the

cloud. The future research work also includes about how to

evaluate the security of the SPICR layer and on the design of

policy languages.

REFERENCES

[1] Stephen S. Yau, Fellow, IEEE, and Yin Yin, “A Privacy

Preserving Repository for Data Integration across Data

Sharing Services”, IEEE Transactions on Services Computing,

vol. 1, no. 3, July- September 2008.

[2] Ranjita Mishra, Sanjit Kumar Dash, Debi Prasad Mishra,

Animesh Tripathy paper “A Privacy Preserving Repository for

Securing Data across the Cloud”

[3] Beneyaz A. Begum, Rajesh K. Thakur, Prashanta K.Patra

paper “Security Policy Integration and Conflict Reconciliation

for Data Integration across Data Sharing Services in

Ubiquitous Computing Environments”. Int’l Conf. on

Computer & Communication Technology.

[4] S.S. Yau and Z. Chen, “Security Policy Integration and

Conflict Reconciliation for Collaborations among

Organizations in Ubiquitous Computing Environments”, Proc.

Fifth Int’l Conf. Ubiquitous Intelligence and Computing, pp.

3-19, 2008.

[5] Kamber, et al., “Data Mining Concepts and Techniques”,

2nd Edition,Elsevier, New Delhi, 2009, p12-13

[6] R. Agrawal, A.V. Evfimievski, and R. Srikant,

“Information Sharingacross Private Databases,” Proc. ACM

SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), pp.

86-97, 2003.

[7] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-

Preserving Encryption for Numeric Data,” Proc. ACM Int’l

Conf. Management of Data (SIGMOD ’04), pp. 563-574,

2004.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

318

[8] M. Bellare, A. Boldyreva, and A. O’Neill,”Deterministic

and Efficiently Searchable Encryption,” Advances in

Cryptology (CRYPTO ’07), pp. 535-552, 2007.

[9] Stallings, W., “Cryptography and Network Security”, 3rd

Edition, Pearson Education, New Delhi, 2003, p8.

[10] Rakshit, A. , et. Al, “Cloud Security Issues”, 2009, IEEE

International Conference on Services Computing

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, and I. Stoica,

"Above the clouds: A Berkeley view of cloud computing,"

EECS Department, University of California, Berkeley, Tech.

Rep. UCB/EECS-2009-28, 2009.

[12] P. Mell and T. Grance, "Draft-NIST working definition of

cloud computing - v15," 21. Aug 2005, 2009.

[13] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic

and Efficiently Searchable Encryption”, Advances in

Cryptology (CRYPTO’07), pp. 535-552, 2007.

[14] Ribeiro, C., Zuquete, A., Ferreira, P., “SPL: An access

control language for security policies with complex

constraints”. In: Proc.Network and Distributed System

Security Symp(NDSS 2001), pp. 89–107 (2001).

[15] Agrawal, D., Giles, J., Lee, K.W., Lobo, J.: “Policy

Ratification”. In: Proc. 6th IEEE Int’l Workshop on Policies

for Distributed Systems and Networks (POLICY), pp. 223–

232 (2005).

[16]Bhatt, R., Joshi, J.B.D., Bertino, E., Ghafoor, A.: “Access

Controlin Dynamic XML-Based Web Services with XRBAC”.

In: Proc.1stInt’lConf. on Web Services (2003),

http://www.sis.pitt.

edu/~jjoshi/ICWS_XRBAC_Final_PDF.pdf.

[17] Yau, S.S., Chen, Z.: “A Framework for Specifying and

Managing Security Requirements in Collaborative Systems”.

In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC 2006.

LNCS, vol. 4158, pp. 500– 510. Springer, Heidelberg (2006).

[18] “OASIS, eXtensible Access Control Markup Language

(XACML)”Version2.0,OASIS standard (2005), http://docs.

oasisopen.org/xacml/2.0/access_control-xacml-2.0-core-pec-

os.pdf.

